
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Domain-Specific Analysis of Mobile App Reviews Using
Keyword-Assisted Topic Models

Anonymous Author(s)

ABSTRACT
Mobile application (app) reviews contain valuable information for
app developers. A plethora of supervised and unsupervised tech-
niques have been proposed in the literature to synthesize useful
user feedback from app reviews. However, traditional supervised
classification algorithms require extensive manual effort to label
ground truth data, while unsupervised text mining techniques, such
as topic models, often produce suboptimal results due to the sparsity
of useful information in the reviews. To overcome these limitations,
in this paper, we propose a fully automatic and unsupervised ap-
proach for extracting useful information from mobile app reviews.
The proposed approach is based on keyATM, a keyword-assisted
approach for topic modeling. keyATM overcomes the problem of
data sparsity by using seeding keywords extracted directly from
the review corpus. These keywords are then used to generate mean-
ingful domain-specific topics. Our approach is evaluated over two
datasets of mobile app reviews sampled from the domains of Invest-
ing and Food Delivery apps. The results show that our approach
significantly outperforms traditional topic modeling techniques by
producing more coherent topics.

ACM Reference Format:
Anonymous Author(s). 2021. Domain-Specific Analysis of Mobile App Re-
views Using Keyword-Assisted Topic Models. In Proceedings of The 44th
International Conference on Software Engineering (ICSE 2022). ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The explosive growth and widespread of mobile technology in
the past decade has changed the way software is produced and
consumed. More users now rely on mobile software than ever
before. According to App Annie - the mobile market data and
analytics platform, an average user spends around 4.2 hours a day
using apps [41]. In response to this unprecedented demand, mobile
app marketplaces, such as Google Play and the Apple App Store
has grown dramatically in size, offering users virtually unlimited
choices of apps. For instance, as of 2020, more than four million
apps were available to download on the Apple App Store alone [72].

Popular app stores enable users to share their experience with
app developers via ratings and textual reviews. This unique chan-
nel of user feedback created an opportunity for app developers to
monitor their end users’ reactions to the different releases of their

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

app. Recently, analyzing mobile app reviews has attracted a con-
siderable attention from the research community [21]. Researchers
have utilized supervised and unsupervised machine learning algo-
rithms to extract informative feedback from user reviews, including
feature requests and bug reports as well as user goals and their
rationale [14, 24, 42, 45, 51, 62, 71].

In general, review mining techniques achieve adequate levels
of accuracy, however, they suffer from several limitations. For in-
stance, supervised classification techniques rely on the presence of
ground-truth datasets which typically require significant manual
effort to generate [24, 42, 62, 70]. Furthermore, these techniques
are constrained to a single rubric of predefined categories and, as
a result, require additional data and model tweaking to general-
ize over domain-specific feedback [82]. For example, users of the
Ridesharing app Uber might complain about wait times and rates,
while users of the Investing app Robinhood might raise concerns
about the app’s requests for their social security or bank informa-
tion. These categories of user feedback can be easily missed in the
ground truth data. Consequently, a one-size-fits-all approach may
not be suitable for domain-specific user feedback [21, 67, 82].

To avoid the drawbacks of supervised techniques, unsupervised
topic modeling techniques, such as Latent Dirichlet Allocation
(LDA) [9], have been applied to extract useful information from app
store reviews [22, 25, 26, 31, 59, 64]. However, LDA does not per-
form well when dealing with small and unstructured text [6, 28, 83].
Short text artifacts, such as user reviews [79], do not typically con-
tain enough information for statistical bag-of-words models to build
semantic connections between words [1]. Therefore, generated top-
ics can be hard to interpret and rationalize and often require an
extensive calibration of hyperparameters to avoid misclassifica-
tion [12, 28, 85].

To overcome these limitations, in this paper we propose a new
approach for extracting useful user feedback from app store re-
views. The proposed approach is based on the keyword-assisted
topic model keyATM [33]. keyATM relies on a set of representative
seed words to model the topics of a large document collection by
finding evidence on the underrepresented topics. These seeding
words can be extracted from the document corpus automatically by
applying automated text summarization techniques. Our proposed
approach is evaluated using two datasets of user reviews sampled
from the domains of Investing and Food Delivery apps. The quality
of generated topics is assessed using a set of intrinsic and extrinsic
measures of topic coherence [8].

The rest of this paper is organized as follows. Section 2 formally
describes LDA and its extension, keyATM. Section 3 introduces our
approach. Section 4 evaluates our approach over two datasets of
mobile app reviews. Section 5 discusses our main findings and their
potential implications. Section 6 describes related work. Section 7
addresses the limitations of our study. Finally, Section 8 concludes
our paper and discusses future work.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

2 BACKGROUND
Topic models are statistical techniques that are commonly used for
discovering latent topics in text collections. In topic modeling, a
topic can be described as a collection of words which represent
a thematic concept in a corpus, and documents in the corpus are
represented as probabilistic distributions over these topics. In what
follows, we introduce the most commonly used topic modeling
approach, LDA, and its extension - the keyword-assisted topic
model (keyATM).

2.1 Latent Dirichlet Allocation (LDA)
Introduced by Blei et. al [9], LDA is an unsupervised technique for
modeling topics in a collection of documents. LDA utilities word co-
occurrence information in order to group related words into a single
topic. To infer topics from a corpus of documents, LDA represents
documents as random mixtures over latent topics. Formally, LDA
calculates two Dirichlet distributions: the word-topic distribution
ϕk for topic k and the document-topic distribution θd for document
d . The hyperparameters α and β are typically used as priors for ϕ
and θ . For each word i in the dataset, a topic zi is drawn from θd
and the wordwi is drawn from ϕzi distributions.

LDA’s usecases range from traditional topic extraction for long
texts [10, 43, 58, 74] to tag recommendation for search engines [40],
to software systems categorization [77], and bug localization [49].
Despite its advantages, LDA suffers from several limitations when
it comes to processing online user-generated text. For instance,
in the context of app feedback analysis, mobile app reviews are
often short, personal, and contain colloquial terms. Thus, they are
too restricted semantically for complex distributional approaches
such as LDA to operate, leading LDA to generate random topics
or even overfit the data [3, 56, 60, 75, 85]. Furthermore, LDA, by
design, tends to generalize over larger topics in order to better
model frequently occurring words. Consequently, more specific,
nuanced topics are often left ignored [33]. This limitation is critical
for user review analysis as useful information in user reviews is
often domain-specific [21, 67, 78, 82].

2.2 Keyword-Assisted Topic Modeling
Keyword-assisted topic modeling (keyATM) is a novel technique
that has been proposed to improve upon traditional topic models,
such as LDA [20, 33]. The key idea behind keyATM is that it in-
corporates user-defined seed words for topic-word distributions.
Each potential topic can be supplemented by specific keywords
that are believed to describe a theme. Formally, keyATM modifies
the traditional LDA algorithm in two ways:

(1) The word-topic distribution ϕk is replaced with a “mix-
ture” of two distributions: a seed-topic distribution ϕs and
a regular-topic distribution ϕr . The seed-topic distribution
can only select words from the initial seed set, while the
regular-topic distribution may select any words in the cor-
pus, including the seed words. The parameter πk controls
the probability of drawing a word from either ϕs or ϕr .

(2) To draw the document-topic distribution θd , for each docu-
ment d , a binary vector ®b of the length S (number of seeded
topics) is generated. ®b takes the values of 1 if d contains any
keyword from a respective seed set and 0 otherwise. Next, a

document-group distribution ζ d is sampled from ®b with a
hyperparameter τ from which a group variable д is drawn.
Each group represents a seed set selected from the corpus.
Finally, the group-topic distribution ψд is used as prior to
draw θd .

Algorithm 1 shows the complete keyword-assisted topic model’s
generative process [33].

Algorithm 1 keyATM’s topic generative process.
1: for topic k = 1 . . .T do
2: choose regular topic distribution ϕrk ∼ Dir(βr)
3: choose seeded topic distribution ϕsk ∼ Dir(βs)
4: choose parameter πk ◃ prob. of drawing from seeded topic
5: end for
6: for seed set s = 1 . . . S do
7: choose group-topic distribution ψs ∼ Dir(α) ◃ of length T
8: end for
9: for document d = 1 . . . D do
10: choose a binary vector ®b ◃ of length S
11: choose a document-group distribution ζ d ∼ Dir(τ ®b)
12: choose a group variable д ∼Mult(ζ d)
13: choose θd ∼ Dir(ψд) ◃ of length T
14: for word i = 1 . . . Nd do
15: choose a topic zi ,d ∼Mult(θd)
16: choose xi ∼ Bern(πzi) ◃ choose which topic distr. to draw from
17: if xi is 0 then
18: select a word wi ∼ Mult(ϕrzi) ◃ from regular
19: else
20: select a word wi ∼ Mult(ϕszi) ◃ from seeded
21: end if
22: end for
23: end for

Our main assumption in this paper is that keyATM can overcome
the limitations of LDA when dealing with mobile app reviews.
In particular, to address the domain-specificity problem, keyATM
utilizes a binary vector ®b which elevates the less-common topics
for the provided seed words. These seed words can be extracted in
advance based on expert opinion in order to supplement keyATM
with a high-level overview of the user review corpus. The main
advantage of keyATM is that once the initial seeds are provided,
keyATM can collect additional semantically-related keywords from
regular topics (line 2, line 16). By combining seeded and regular
distributions, keyATM generates more cohesive and focused topics,
overcoming the main drawback of using LDA when it comes to
modeling semantically-restricted user reviews.

3 APPROACH
The proposed approach is depicted in Fig. 1. In general, this ap-
proach can be divided into three main steps. In the first step, we
apply several heuristics to extract informative user reviews from
a specific application domain. In the second step, we preprocess
and summarize extracted reviews in order to generate a represen-
tative set of important keywords, or seeds for the corpus. In the
third step, seeds are selected and fed into keyATM to generate a
topic distribution over the extracted reviews. In what follows, we
describe each of these phases along with illustrative examples.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Domain-Specific Analysis of Mobile App Reviews Using Keyword-Assisted Topic ModelsICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Text preprocessing

Summarization
(Hybrid TF-IDF)

App developer App users

Keyword (seed) extraction

Temporal conjunctions

Informative Review extraction Topic generation

1-2 star rating

Keyword (seed) selection

keyATM

Figure 1: Our proposed approach for app review topic modeling

3.1 Informative Review Extraction
Mobile app reviews vary in quality. Previous research has shown
that app reviews do not follow a well-defined structure and often
contain spelling fluctuations, colloquial terms, and spam [37, 80].
Therefore, a large proportion of app store reviews is simply un-
informative [37]. As topic models are particularly susceptible to
generating uninterpretable topics from semantically-poor docu-
ments [18], the first step of our approach is to improve the quality
of our review corpus by filtering out uninformative feedback.

To detect informative reviews, we adopt Guo and Singh’s ap-
proach for synthesizing potentially meaningful user stories from
mobile app reviews [23]. A user story can be defined as a relation-
ship between an action that a user took and a problem that an
app produced in response to that action. A user story describes
users’ experience and outcome when interacting with their apps’
specific functionality. For example, a user might complain that their
navigation app loses GPS signal when in drive mode. Such a story
contains potentially useful information for app developers as it out-
lines the condition (in drive mode) under which a problem (GPS lost
signal) occurred. These stories are commonly present in low-star
app reviews (one and two stars) given that app problems are often
accompanied by low user ratings [29, 36, 79]. Our expectation is
that topics modeled after reviews with user stories will be more
coherent, and thus, more interpretable.

To identify reviews that might contain user stories, common tem-
poral conjunctions are used, including words such as after, as soon
as, before, every time, then, until, when, whenever, while, and during.
Temporal conjunctions indicate temporal and causal ordering of
events that was found to be particularly helpful for mitigating the
problems of text sparseness [53]. For example, consider the four app
reviews in Example 1. R1, R2, and R3 are informative reviews that
contain user stories - action-problem pairs (temporal conjunctions
are underlined). R1 describes an action of scroll through the pages
and the problem - a crash. Such a review can help our topic model
to build a semantic association between crash and scrolling. R4 is a
false positive.

Example 1

• R1: This app crashes when I scroll through the pages.
• R2: They want your SSN before you can even look. It’s
definitely a scam.

• R3: To verify identity it requires u take a picture but
then immediately crashes.

• R4: Still waiting, after a month, to be approved.

3.2 Seed Generation
Under this step of our approach, we seek to generate sets of repre-
sentative seeds (keywords) from extracted user reviews. To correctly
model the underlying latent topic structure, these keywords have
to be representative of as many themes in the review corpus as
possible [33]. Therefore, the keyword generation process requires
a priori knowledge of the domain of interest which might not be
readily available to the researcher [4, 5]. For example, to model
the representative topics of app reviews in the domain of Investing
apps, the researcher has to know the specific themes that users dis-
cuss in the reviews and the corresponding keywords to generalize
over these themes. Extracting these keywords involves manually
classifying user reviews into representative topics, which nullifies
the advantage of unsupervised techniques. To address these limita-
tions, in our adaptation of keyATM, instead of determining seeds
manually, we use extractive summarization.

A summary can be described as a short and concise description
that encompasses the main theme of a collection of documents
related to a similar topic [35, 46]. In extractive summarization, text
artifacts (reviews, comments, tweets) which contain the most im-
portant (representative) keywords in the corpus are extracted as
potential summaries of the entire corpus. In a sense, each generated
summary represents a potential latent theme in a collection of doc-
uments, thus can then be used to provide representative keywords
(seeds) for keyATM. Common extractive summarization techniques,
such as Hybrid-TF.IDF [32] and SumBasic [57], have been applied to
summarize unstructured online user feedback (e.g., tweets, YouTube
comments, and user reviews) [34, 65, 81, 82] and have been shown
to achieve very high levels of agreement with human-generated
summaries. Based on these observations, in our analysis, we utilize
such techniques to extract the initial set of seeding keywords from
the corpus.

To generate summaries from mobile app user reviews, Hybrid
TF.IDF [32] is often utilized. TF.IDF consists of two components:
1) TF - Term Frequency, or how many times a term appears in a
document and 2) IDF - Inverse Document Frequency, or how much
information a term provides. TF.IDF-based methods have shown
acceptable accuracy levels across a variety of text summarization
tasks [2, 16, 30, 38, 54]. However, short texts, such as user reviews,
pose a unique challenge to TF.IDF. In particular, because short texts
contain only a handful of words, the probability of individual terms
occurring multiple times in a single document is low. Therefore,
the majority of words get assigned the same TF value. Hybrid
TF.IDF addresses this issue by calculating the term frequency as
the total frequency of term t across all documents, divided by the

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

total number of terms. Formally, Hybrid TF.IDF weight for a term t
can be computed as:

Hybrid TF.IDF(t,d) =
ft ,D∑
ft ,d

× log
|D |

|d ∈ D : t ∈ d |
(1)

where ft ,D is the count of term t in all documents,
∑

ft ,d is the total
count of all terms in the corpus, |D | is the number of documents in
the corpus, and |d ∈ D : t ∈ d | is the number of documents that con-
tain t . The total weight of a document d is calculated by summing
up all terms’ weights. However, in the current form, Hybrid TF.IDF
would be biased toward longer documents as they contain more
terms. To work around this problem, a normalization factor nf is
introduced. The modified Hybrid TF.IDF formula for a document d
can be defined as follows:

Hybrid TF.IDF(d) =
1

max(nf , |d |)
×

|d |∑
i=1

Hybrid TF.IDF(ti ,d) (2)

The normalization factor is typically defined as the upper-bound
of the required summary length (number of words) and can be
determined experimentally. The actual summarization is then per-
formed by ranking the documents by their total weight. To avoid a
situation where summaries with similar words are ranked together,
a similarity threshold is used, calculated as the cosine of the angle
between the vectorized representations of each two summaries. An
optimal similarity threshold can be set to a small positive number
in advance, depending on the desired uniqueness of summaries. To
illustrate our summarization step, consider the top-4 summaries in
Example 2 generated for a dataset of reviews sampled from the do-
main of Investing apps with the threshold of 0.1 (no two summaries
should have a cosine similarity greater than 0.1). Each summary
encompasses a separate topic, such as taking money from user’s
account (S1), app crashing (S2), problems with selling a stock (S3),
and issues with customer support (S4).

Example 2

• S1: This takes out money even after you close your ac-
count...

• S2: This app now crashes 100% of the time, every time I
open it

• S3: Allowed me to buy stock, but when i tried to sell my
stock they didn’t sell it

• S4: Great until you need customer support, once you
need support you’re on your own

To improve the accuracy of summarization, text preprocessing
strategies are often used. Before generating summaries, extracted
app reviews are first converted to lowercase and tokenized into
individual words, with punctuation, URLs, and other special sym-
bols removed. Additional splitting strategies, such as splitting digits
and alpha-characters are performed (e.g. 2hrs becomes 2 hrs). Eng-
lish stop-words, such as will, this, it, are removed based on the
list provided in NLTK package [7]. Additional cohort-specific stop-
words are manually identified and added to the list. These words
include app names (robinhood, acorn), frequent words (yeah, well),

and short 1-2 letter words that do not contain any semantic in-
formation. Finally, lemmatization is applied to the resulting list of
words. Lemmatization is a normalization technique which reduces
the number of distinct entries in the data. More specifically, lemma-
tization converts a word into its dictionary form. This process is
applied to improve the performance of clustering algorithms by
collapsing different forms of the same word into a single entity [39].
Example 3 presents the preprocessed summaries from Example 2.

Example 3

• S1: take, money, even, close, account
• S2: app, crash, time, every, time, open
• S3: allow, buy, stock, try, sell, stock, sell
• S4: great, need, customer, support, need, support

3.3 Topic generation
Since each summary succinctly describes a separate theme, seeds
are generated by obtaining distinct terms from the preprocessed
summaries. For example, the terms great, need, customer, and support
are extracted from S4 to describe a theme discussing issues with
customer support. These seeds are then supplied to keyATM for
the topic modeling step. Our main expectation is that these terms
should provide enough semantic information for keyATM to be
able to generalize over the whole dataset of extracted user reviews.
In what follows, we empirically evaluate our assumption using two
datasets of mobile app reviews.

4 EVALUATION
In this section we illustrate the operation of our proposed topic gen-
eration process over two datasets of user reviews sampled form the
domains of Investing and Food Delivery apps. We further evaluate
our generated topics by comparing them to the topics generated by
LDA. Our main research question is:How well does our approach
perform in comparison to LDA?

4.1 Data Collection
To demonstrate the operation of our approach, we apply it on
two datasets of mobile app reviews sampled from the domains of
Investing and Food Delivery apps. Investing apps have become
increasingly popular in recent years due to the increasing inter-
est in cryptocurrency trading. Zero-commission trading fees and
continuous media coverage have multiplied the popularity effect
of these apps by bringing in millions of new first-time traders. For
example, Robinhood, a simplified Investing app, reported that more
than 6 million new users joined the platform in 2021 right after the
WallStreetBets subreddit controversy [66]. Similarly, the domain of
Food Delivery has experienced an unprecedented growth during
the COVID-19 pandemic as the demand for Food Delivery services
has significantly increased. For example, the four major Food Deliv-
ery apps - DoorDash, UberEats, GrubHub, and Postmates reported
a significant increase in revenue during the stay-at-home order of
2020 [73]. In fact, the market segment of food delivery apps, cur-
rently estimated at $126.91 billion, is expected to grow to $192.16
billion by 2025 [68].

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Domain-Specific Analysis of Mobile App Reviews Using Keyword-Assisted Topic ModelsICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 1: The number of user reviews extracted for each app
in our dataset.

Investing Food delivery
App Reviews App Reviews
Robinhood 7872 Uber Eats 58933
Acorn 4342 DoorDash 34917
Stash 2445 Grubhub 17784
E*TRADE 1605 Postmates 17610
Fidelity 1496 Seamless 1432
TD Ameritrade 1403
Schwab 1079
Personal Capital 509

To collect user reviews for our analysis, we selected the most
popular apps from both domains. To identify these apps, the top-100
apps in the category Finance (Investing) and Food&Drink (Food
Delivery) on Google Play and the Apple App Store were exam-
ined. Apps, which met the following criteria were included in our
analysis:

(1) For an app to be included in our analysis, we only consid-
ered apps with 10,000 reviews or more. This number of re-
views is necessary in order to include only popular and
well-established apps in our analysis.

(2) For the Investing domain, banking “all-in-one” apps were
excluded as the majority of these apps did not provide Invest-
ing services. For Food Delivery apps, specific restaurants’
delivery apps, such as Papa John’s Pizza & Delivery official
app, were also excluded.

After examining the top-100 apps, eight Investing and five Food
Delivery apps were included. For each of these apps, we collected
all textual reviews and star ratings on the Apple App Store and
Google Play using Python web scrappers12. Overall, 370,820 app
reviews were collected for our set of Investing apps and 266,544
reviews were collected for the set of Food Delivery apps. Out of
these reviews, only 1-2 star rating reviews which included user
stories (See Section 3.1) were considered in our analysis, a total
of 20,760 reviews for the domain of Investing apps and 130,676
reviews for the Food Delivery domain. The distribution of extracted
reviews over our apps is shown in Table 1.

4.2 Evaluation measures
Evaluating topic models can be a challenging task. Due to the fact
that there is typically no ground-truth document-topic distribution
that exists for every corpus, there is not a single objective metric to
evaluate the quality of generated topics. To address this challenge,
several topic evaluation techniques have been proposed in the
literature. From among these techniques, Normalized Pointwise
Mutual Information have been found to be closely correlated with
human judgment of topic quality [15, 44, 69].

Introduced by Bouma [11], Normalized Pointwise Mutual Infor-
mation (NPMI) is a information-theoretic measure of information
overlap between words. NPMI can be measured by counting how

1https://pypi.org/project/app-store-scraper/
2https://pypi.org/project/google-play-scraper/

many times two words appear in the same document versus how
many times they appear separately. Formally, for two wordswi and
w j NPMI can be calculated as:

NPMI(wi ,w j) =
log p(wi ,w j)

p(wi)p(w j)

− logp(wi ,w j)
(3)

where p(wi ,w j) is the number of documents in whichwi andw j ap-
pear together, and p(wi)p(w j) is the the number of documents con-
tainingwi andw j respectively. The numerator of the NPMI formula
is then normalized by dividing it by the negative log-transformed
count ofwi andw j appearing together. This results in a value be-
tween -1 whenwi andw j never occur together and 1 whenwi and
w j only occur together.

The underlying assumption behind using NPMI for evaluating
topic quality is that words of cohesive topics should be well con-
nected, or have relatively high average pairwise NPMI. For example,
Fig. 2 shows a sample NPMI graph of a word set sampled from the
review corpus of the Food Delivery domain. The graph shows that
the words cold, driver, food, lost, late, and hot form a dense-set of
well-connected nodes (words). This is expected given that these
words frequently appear in the same reviews, for example “drivers
are always either late or lost I always get my food cold and my drink
hot.” The word discount, while connected to food, stands at a fur-
ther semantic distance from other words as it does not appear as
frequently with them in the same reviews.

There are two main strategies to compute NPMI: intrinsic and ex-
trinsic [8]. Intrinsic NPMI is calculated based on the co-occurrence
of topic words within the corpus. In contrast, the extrinsic strategy
uses external datasets of human-produced textual knowledge, such
as Wikipedia, to compute the co-occurrence, and thus semantic
relatedness, of words. Intrinsic NPMI scores computed over the
corpus can show how well the model learned the underlying data,
or the extent that topic models accurately represent the content of
a corpus. Extrinsic NPMI, on the other hand, shows how common
generated topics are in daily language, which can be analogous to
how a human examining the quality of topics would decide whether
they are coherent or not [69].

In our analysis, we employ both strategies for computing topic
coherence. For extrinsic evaluation, we download the entire English
Wikipedia dump3 of October 2017. The dump includes 5 million
articles, 133 word-length per article on average, packed into a 16
GB JSON file. Each article was tokenized and preprocessed by con-
verting into lowercase and removing special non-ASCII symbols. To
calculate the coherence of a given topic is calculated as the average
NPMI between its 10 most probable words in a topic (a total of
45 unique word-pairs). Formally, our topic coherence measure is
calculated as:

coherence(t) =
1
45

×

9∑
i=1

10∑
j=i+1

NPMI(wi ,w j) (4)

3https://dumps.wikimedia.org/enwiki/

5

https://pypi.org/project/app-store-scraper/
https://pypi.org/project/google-play-scraper/
https://dumps.wikimedia.org/enwiki/

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

food

cold

hot

late

driver

lost

discount

Figure 2: A connected NPMI graph of words extracted from
the food delivery review corpus.

4.3 Model Configuration
To compare the performance of our approach to the baseline (LDA),
we perform hyperparameter tuning in order to achieve the maxi-
mum coherence score possible over both datasets. In addition to
the number of topics (K), LDA has two hyperparameters, α and
β . We use the implementation of LDA from the Gensim Python
package4, where α is inferred from the corpus automatically and
β is set to 1/K . As a standard practice of topic models evaluation,
we train LDA model for K = {10, 20, ..., 100}. These bounds of K
were selected based on the coherence score, where a sharp decline
indicates that a model no longer can generate coherent topics.

One of the main parameters that determine the performance of
our approach is the quality of the seeding words. Smaller number of
seeds might not convey enough semantic information for keyATM
to capture meaningful topics, while larger number of keywords
might be too general to form cohesive topics. To optimize of set of
seeds, we calculated the pairwise NPMI scores for each seeds in each
individual summary review. We then attempt to optimize the set of
seeds by removing the bottom n-th percentile of the seeds (seeding
wordswhich share the lowest average pairwise similarity with other
seeds). The main assumption is that removing these potentially
unrelated words we can produce a more focused seeds, and thus,
better topics. For example, Table 2 shows the average NPMI score
for a group of words sampled from the summary reviews of the
Food Delivery corpus. Words such as refuse, first, and add can
be removed due to their low average pairwise similarity to other
words in the group. To test how many seeds to consider, we include
four model configurations in our analysis with n = {0, 5, 15, 25},
where keyATM_n refers to keyATM being trained after the n% of
seeds at the lower end of NMPI score are removed. Each keyATM
configuration is then trained for different value of K to determine
the optimal ⟨n,K⟩ configuration for the review corpus.

4.4 Evaluation Results
Areplication package of our analysis, including our datasets,
is publicly available5. To answer our research question, we trained
an LDA model and each configuration of keyATM over our two
domains of app reviews for various K values. The coherence scores
for the trained models are shown in Fig. 3. For each K , we com-
pared the topic coherence scores by performing an independent
two-tailed t-test between LDA and each configuration of keyATM.
The results of this test are presented in Tables 3 and 4.

4https://pypi.org/project/gensim/
5https://github.com/icse2022submission/submission1

Table 2: Pairwise NPMI scores (intrinsic) over an example
keyword set in the Food Delivery domain, sorted by average
score. “refuse” is removed at bottom 5th, “first” is removed
at bottom 15th, and “add” is removed at bottom 25th respec-
tively.

se
rv
ic
e

ch
ar
ge

fe
e

la
rg
e

m
ak
e

fla
t

us
e

pl
ac
e

ad
d

fir
st

re
fu
se

service 1 0.10 0.14 0.07 0.08 0.06 0.13 0.05 0.01 0.06 0.10
charge 0.10 1 0.32 0.08 0.08 0.09 0.05 0.07 0.10 0.05 0.07
fee 0.14 0.32 1 0.13 0.09 0.15 0.06 0.04 0.24 0.04 0.00
large 0.07 0.08 0.13 1 0.11 0.20 0.06 0.10 0.10 0.07 0.07
make 0.08 0.08 0.09 0.11 1 0.06 0.07 0.08 0.08 0.08 0.06
flat 0.06 0.09 0.15 0.20 0.06 1 0.01 0.02 0.09 0.05 0.09
use 0.13 0.05 0.06 0.06 0.07 0.01 1 0.05 0.03 0.12 0.05
place 0.05 0.07 0.04 0.10 0.08 0.02 0.05 1 0.06 0.13 0.03
add 0.01 0.10 0.24 0.10 0.08 0.09 0.03 0.06 1 0.03 -0.05
first 0.06 0.05 0.04 0.07 0.08 0.05 0.12 0.13 0.03 1 0.02
refuse 0.10 0.07 0.00 0.07 0.06 0.09 0.05 0.03 -0.05 0.02 1

The results show that our approach outperformed LDA in terms
of extrinsic and intrinsic coherence scores for both domains over
all values of K , with minor exceptions. For the Investing domain,
LDA’s topic quality started to decline sharply after 20 topics, while
our approach maintained a relatively flat coherence curve over the
whole range of K . In terms of significance of the obtained results,
we found that our approach tends to perform significantly better
with a higher number of topics (K = 50 and K ≥ 70). For K = 10,
we found that our approach significantly outperforms LDA in terms
of intrinsic coherence, which suggests that our approach infers the
topics from the underlying Investing dataset better. For the Food
Delivery domain, we observed a similar trend, with LDA’s topic
coherence dropping more sharply after the K = 30 mark, thus,
every keyATM configuration significantly outperformed LDA for
K ≥ 50. Furthermore, some configurations, such as keyATM-15
and keyATM-25 significantly outperformed LDA across all K ≥ 20
in terms of extrinsic coherence, which suggests that the produced
topics even for smaller K values are more interpretable by humans.

We further observed that some keyATM configurations outper-
form each other for differentK values. For example, in the Investing
domain, keyATM-25 performs the best when K = {10, 40, 80, 100},
but produces slightly worse results for the rest of the Ks. To com-
pare the performance of various keyATM configurations, we used
an independent t-test for every pair of configurations. The gen-
eral trend suggests that removing some percentile of unrelated
keywords somewhat helps the model to produce more coherent
topics for certain K values. However, not all improvements were
statistically significant. In what follows, we discuss these trends
along with their potential implications in greater detail.

5 DISCUSSION AND IMPACT
Based on our results, the main implication of our study suggests
that it is possible to avoid a costly tagging process of a ground truth
dataset and still outperform a traditional topic modeling technique
over app review data. With only a handful of hyperparameters
required to consider, our study outlines a first-of-its-kind approach
for inferring meaningful latent topics from a semantically-restricted
corpus of user reviews.

6

https://pypi.org/project/gensim/
https://github.com/icse2022submission/submission1

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Domain-Specific Analysis of Mobile App Reviews Using Keyword-Assisted Topic ModelsICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

10 20 30 40 50 60 70 80 90 100
K

0.59

0.60

0.61

0.62

0.63

0.64

0.65

Co
he

re
nc

e

Investing domain, extrinsic coherence

10 20 30 40 50 60 70 80 90 100
K

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Co
he

re
nc

e

Investing domain, intrinsic coherence

10 20 30 40 50 60 70 80 90 100
K

0.40

0.45

0.50

0.55

0.60

0.65

Co
he

re
nc

e

Food delivery domain, extrinsic coherence

10 20 30 40 50 60 70 80 90 100
K

−0.15

−0.10

−0.05

0.00

0.05

0.10

Co
he

re
nc

e

Food delivery domain, intrinsic coherence

10 20 30 40 50 60 70 80 90 100
K

0.15

0.10

0.05

0.00

0.05

0.10

Co
he

re
nc

e

Food delivery domain, intrinsic coherence

LDA keyATM-0 keyATM-5 keyATM-15 keyATM-25

Figure 3: Intrinsic and extrinsic coherence scores for two domains of app reviews across all tested model configurations and
K . For example, keyATM-5 is a keyATMmodel with the bottom 5th percentile of keywords removed from each summary.

Table 3: Independent t-test results (t-values) for the difference between extrinsic (Ext) and intrinsic (Int) coherence of the
baseline (LDA) and the various keyATMmodel configurations for the Investing domain. Significant values are in bold. p-values
are indicated:*p<0.05; †p<0.01; ‡p<0.001.

keyATM-0 keyATM-5 keyATM-15 keyATM-25
of topics Ext Int Ext Int Ext Int Ext Int

10 0.794 2.599* 0.974 1.905 1.428 2.861* 1.532 3.220†
20 0.473 0.742 0.123 0.876 0.214 1.620 -0.079 -0.101
30 1.841 0.677 0.765 0.199 1.310 0.380 0.858 0.652
40 1.430 1.636 1.629 3.536‡ 0.983 1.777 2.226* 1.768
50 2.418* 1.536 2.126* 2.129* 3.022† 0.454 2.644† 0.470
60 1.007 1.911 1.012 3.213† 1.543 2.934† 1.495 3.616‡
70 2.094* 3.495‡ 1.905 2.182* 2.882† 2.234* 2.013* 1.809
80 1.398 4.328‡ 2.235* 1.924 1.627 2.720† 3.025† 3.915‡
90 0.984 2.360* 1.284 2.170* 2.446* 1.557 1.955 3.480‡
100 2.467* 4.577‡ 3.048† 2.705† 3.174† 3.245† 4.451‡ 2.489*

Table 4: Independent t-test results (t-values) for the difference between extrinsic (Ext) and intrinsic (Int) coherence of the
baseline (LDA) and the various keyATM model configurations for the Food Delivery domain. Significant values are in bold.
p-values are indicated:*p<0.05; †p<0.01; ‡p<0.001.

keyATM-0 keyATM-5 keyATM-15 keyATM-25
of topics Ext Int Ext Int Ext Int Ext Int

10 -0.061 0.002 0.507 0.345 0.434 0.086 0.749 -0.188
20 1.746 0.620 1.580 1.083 2.319* 0.676 2.148* 0.323
30 1.657 0.066 1.744 -0.727 2.280* -0.566 2.382* -0.256
40 2.370* 1.687 2.484* 1.719 2.425* 1.798 2.391* 1.757
50 3.580‡ 2.689† 3.763‡ 2.717† 4.027‡ 2.765† 3.868‡ 2.798†
60 3.607‡ 3.404‡ 3.831‡ 3.224† 3.878‡ 3.305† 4.075‡ 3.483‡
70 4.221‡ 3.846‡ 4.360‡ 3.860‡ 4.287‡ 3.934‡ 4.370‡ 3.801‡
80 3.762‡ 3.419‡ 3.802‡ 3.573‡ 4.084‡ 3.563‡ 3.745‡ 3.342†
90 4.265‡ 3.946‡ 4.441‡ 4.112‡ 4.498‡ 4.104‡ 4.638‡ 4.040‡
100 5.755‡ 5.835‡ 6.061‡ 5.815‡ 5.991‡ 5.447‡ 6.174‡ 5.884‡

Our results provide evidence that it is possible to significantly
improve the quality of the inferred topics by supplementing a topic
model with a small set of representative keywords. In fact, even
when the supplied keyword set is incomplete, the model is still able
to correctly infer latent topics and provide interpretable results. For

example, Table 5 presents the top-5 topics in terms of coherence
generated for the reviews in our datasets. Topic 3 of the Investing
app reviews is about losing money due to price fluctuations on
a trading day. However, only a handful of words hinting toward
that specific topic were provided to the model: sell, stock, and

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

lose. Nevertheless, the model correctly identified the main idea
of the topic and discovered new related words. Another example
is Topic 1 in the Food Delivery review corpus, which seems to
be discussing a problem with customer service. Interestingly, the
keywords customer and service were never supplied to this topic.
Nevertheless, the model was still able to create a topic with a high
coherence score. An interesting case is Topic 2 from the Investing
domain - none of the keywords appeared in the top-10 words of the
topic, however, the topic’s theme is interpretable, pointing out to
user interface (UI) problems. In fact, this topic which was obtained
with K = 10 does not appear in LDA’s topics at all for the similar
values of K = {10, 20, 30}. This shows that our approach is able
to extract underrepresented topics from a semantically-restricted
dataset, where LDA typically fails.

As expected, smaller sets of focused keywords (seeds) produced
the highest-quality topics. A large number of general keywords
still managed to produce coherent topics, although such keywords
are less likely to appear in the top-10 list of the topic. This suggests
that the quality of the resulting model is influenced by the quality
of the supplied keywords, therefore the main effort should be fo-
cused on the process of improving the seeding words for the topics.
This process, in turn, is dependent on the underlying dataset. For
example, using different summarization parameters can produce
different seeds. As such, these parameters should be tuned along
with the rest of the hyperparameters, such as K , α , and β .

In terms of specific model configurations, our results indicate
a general trend toward higher coherence score produced by the
configurations with a higher percentile removed keywords (n). The
implications of this finding suggest that there is no one-size-fits-
all approach when it comes to deriving an optimal model: each
document corpus requires a comprehensive hyperparameter tuning
strategy to create the best-performing model. For instance, in terms
of raw coherence score, we found that keyATM-15 performed the
best when K was set to 10 for Investing and K = 50 for Food
Delivery domains. This difference in K can be explained by the
difference in dataset size; the Food Delivery dataset has about 6.5
times more reviews than the Investing dataset.

In terms of impact, our expectation is that our approach would
advance the state of the art by enabling further empirical investi-
gations related to using topic modeling in software engineering
tasks. In particular, topic modeling, especially LDA, has long been
used to provide support for basic Software Engineering activities,
such as requirements traceability [27], bug localization [76], code
retrieval [48], and most recently mobile app review analysis. How-
ever, LDA’s performance has always been hindered by the limited
semantic and syntactic nature of software artifacts, whether source
code, bug reports, requirements specifications, or software user
reviews [17, 27, 52, 82]. Our proposed approach aims to address
these challenges by assessing LDA to produce more cohesive topics
that can be pointed out by few important words extracted from the
corpus. Such words can be automatically determined using basic
text summarization techniques that have been shown to achieve
high levels of agreements with human generated summaries over
collections of software user feedback [34, 65, 81]. This relatively
simple methodology can overcome the limitations often associated
with other expensive solutions, such as using machine learning

to tune LDA’s parameters [61], thus, enabling the development of
more practical software engineering tools.

In terms of practical impact, our results highlight the need for a
more nuanced, domain-aware approach for information extraction
from user reviews. Similar to existing topic modeling and text
classification algorithms, our approach can facilitate a transition
from domain knowledge to requirements specifications. However,
the key advantage of our approach over the existing techniques is
that it can provide more fine-grained requirements information and
simultaneously avoid the need to manually label a subset of reviews.
The information obtained from keyATM can then be effectively
used by app developers. For instance, developers of Investing apps
may observe that UI (Topic 2) is a major concern of Investing app
users, thus, concentrate their development efforts to improve user
experience by extracting reviews where the UI topic has a high
probability and analyze them, and may be even derive a more
nuanced set of keywords (e.g., screen, color, graphs, etc.) to split
the topic into any level of detail required. After the release of their
apps, developers can further monitor user feedback and reallocate
their resources more efficiently to quickly address the emerging
user concerns.

6 RELATEDWORK
The problem of extracting valuable information from app reviews
has received significant attention in the literature [14, 24, 25, 34, 42,
45, 47, 51, 55, 70, 71, 78, 80, 82, 84]. A wide variety of supervised and
unsupervised techniques have been used to mine such reviews for
different categories of feedback. For example, Guo and Singh [23]
proposed Caspar - an approach for extracting user stories from in-
formative app reviews. A user story is an “action-problem” pair of
events where a problem with an app is triggered by user action. The
authors applied dependency parsing to extract temporally-related
user stories from app reviews and train a bidirectional LSTM net-
work for classification. Panichella et al. [63] proposed a tool for clas-
sifying user reviews into useful software maintenance categories.
The approach uses NLP heuristics, such as common linguistic pat-
terns, to formulate features for the classifier. The authors found
that the structure of a review and its sentiment can predict the
maintenance category with high precision and recall. Williams et
al. [82] proposed a methodology to extract domain-specific user
feedback from app reviews and tweets. The authors utilized Hybrid
TF.IDF to extract important words from app reviews and then used
PMI to derive relationships between them to form specific user
concerns in a given app domain.

Along the line of our work, active learning was proposed to
reduce the manual effort required to classify app reviews. Active
learning algorithms learn the data incrementally by selecting a
small sample of reviews for manual labeling based on uncertainty
metric and predicting the remaining labels. The steps are repeated
until the desired accuracy is reached. For example, Dhinakaran
et. al. [19] evaluated an active learning pipeline for app review
classification. The authors classified reviews into four categories:
feature request, bug report, user experience, and rating. Several
uncertainty sampling metrics were proposed and evaluated, such
as Least Confident Prediction, Smallest Margin, and Highest En-
tropy. The experiment was conducted on Maalej et al.’s labeled

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Domain-Specific Analysis of Mobile App Reviews Using Keyword-Assisted Topic ModelsICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

Table 5: Top-5 generated topics for the Investing and Food Delivery domains by the best performing model configurations.
keyATM-15 with K=10 was used for the Investing domain, and keyATM-15 with K=50 was used for Food Delivery. Seeds are
highlighted in bold. Example reviews are selected from the top-10 reviews for each topic.

Domain Topics Most probable words Example review

Investing

Topic 1 trade, day, money, trad-
ing, stock, time, market,
platform, service, like

...price could swing $.10-$.30/share easily between the time you’ve submitted a purchase
and when it actually submits. Trading hours open up at 8am and only last until 5pm, the
worst trading hours by far

Topic 2 see, update, change, new,
stock, like, screen, look,
show, view

Please change the color and font of new Robinhood, it’s hard to focus and it hurt my eyes
if I look into app for while, not impress with this update.

Topic 3 money, sell, stock, lose,
price, market, time, buy,
trade, trading

When I decided to sell my shares my orders were not executed at my price and the stock
kept going down. Lost of hundred dollars.

Topic 4 account, money, email,
customer, bank, time, ser-
vice, day, say, support

The customer service is HORRIBLE!!!!!!!!... Contacted customer service 2 or 3 times and
after 24 hours... They say it takes about 10 days to close and get money transferred back
to my bank.

Topic 5 money, account, take,
bank, invest, fee, charge,
back, day, transfer

Reason for me giving a low rating is due to the fact that all it seems the app is doing is
taking my money. I’m getting over drafts, I STILL don’t see where my $700 in roundups
went

Food delivery

Topic 1 help, problem, would,
service, could, customer,
app, great, able, order

Customer service is really bad. 2 days in a row they cancelled my orders

Topic 2 app, work, address, or-
der, try, time, use, update,
even, get

When I type in my address and zip code and then hit Find Restaurants, it says "State is
UNSET should be VALID"

Topic 3 drive, driver, food,
minute, around, house,
away, street, go, car

Watched the driver drive to the next town over before delivering our food.

Topic 4 app, order, time, second,
crash, try, twice, open,
use, every

Over the past few days the app has been crashing every single time I open it.

Topic 5 app, ever, number, use,
bad, give, account, sign,
one, star

I can’t even log in. It asks for my phone number...

datasets [50]. The authors showed that active learners that employ
binary classifiers were more effective in terms of F-score for review
classification tasks than passive learners.

Recently, unsupervised techniques have been used to discover
latent topics in user reviews. Most of these approaches modify
and extend LDA to increase its effectiveness for user generated
feedback [12, 13, 56, 59, 67]. For instance, Mehrotra et al. [56] pro-
posed grouping related short user tweets based on hashtags before
supplying them to the LDA model. Qiao et al. [67] introduced the
Latent Product Defect Mining Model (LPDM) for collecting domain-
specific product defects from customer reviews. This approach
augments LDA by including latent product components and their
descriptions. While these techniques share the same goal of improv-
ing topic cohesiveness, to the best of our knowledge, our proposed
approach is the first to utilize keyATM as well as text summarization
techniques to generate more cohesive topics of user reviews.

7 THREATS TO VALIDITY
The study conducted in this paper suffers from several methodolog-
ical constraints that might jeopardize the validity of our results.
One major external validity threat might stems from the fact that

our results might not be generalizable to other application domains
of mobile apps. In an attempt to overcome this threat, we performed
our analysis on two different domains of apps, Investing and Food
Delivery. Furthermore, the datasets have drastically different sizes
to ensure that our approach is able to produce coherent topics
regardless of the amount of data available.

An internal validity threat might arise from the fact that we
removed a large amount of reviews during our informative review
extracting step in order to increase the quality of the review corpus.
Therefore, some of the latent topics from the removed reviews
might have been missed. However, performing review filtering is
a standard practice for any supervised or unsupervised machine
learning task. These methodologies have been shown to remove
high percentage of uninformative reviews in review corpora with
high levels of precision [23, 36]. Furthermore, the hyperparameter
settings used to tune LDA might affect the internal validity of the
study. However, there are no robust methodology available for every
parameter for every scenario. Therefore, we applied a standard
procedure of training several models with various K parameter
values until the best results were obtained.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Another internal validity threat might stem from the apps se-
lected for each domain. While we acknowledge that there are
dozens, if not hundreds, of apps available under the Investing and
Food Delivery domains, most of these apps do not have a sufficient
number of reviews. Including such less popular apps would be
problematic as the generated topics would be biased toward apps
with more reviews. Nonetheless, we acknowledge the fact that the
results of our analysis might not necessarily generalize over other
apps in our domains or even over other domains.

Construct validity is the degree to which the various perfor-
mance measures used in the study accurately capture the concepts
they purport to measure. A construct validity threat might be raised
about the reliability of the coherence measures used to evaluate
the quality of generated topics. To address these threats, we used
two types of intrinsic and extrinsic coherence measures that are
based on the semantic relatedness of topic words. These measures
have been extensively used in the literature and have been shown
to achieve high correlation levels with human judgment [69]. Gen-
erally speaking, topic models are often utilized as a means to an
end, where generated topics are used to help enable other tasks,
such as information retrieval, or even used as input for machine
learning algorithms, thus, they are better evaluated in that context.
Nonetheless, further evaluation using human judges is necessary
to paint a full picture of topic quality.

8 CONCLUSIONS
In this paper, we proposed an approach for analyzing mobile app
user feedback using keyword-assisted topic models. The proposed
approach relies on a set of seeding words (keywords) extracted
from the corpus to generate more cohesive topics. In this paper,
we showed that these keywords can be automatically extracted
from the corpus using general-purpose extractive summarization
techniques. The proposed approach was evaluated on two datasets
of user reviews, sampled from the domains of Investing and Food
Delivery apps. The results showed that our proposed keyword as-
sisted topic modeling approach was able to significantly outperform
LDA on both intrinsic and extrinsic measures of topic cohesiveness.
Furthermore, our approach was able to model topics that are often
overlooked by classical topic modeling techniques. Our findings in
this paper are intended to advance the state-of-the-art in mobile
app review analysis as well as enable further empirical investiga-
tions into topic modeling for software user feedback. To achieve
these goals, our work in this paper will be extended across two
main directions:

• Automatic tuning: we will continue to evaluate the proposed
approach over larger datasets of mobile app reviews and
across more application domains. Our objective is to devise
automated optimization strategies for tuning the different
parameters of our underlying topic modeling approach in
different settings.

• Tool support: a working prototype which will implement
our findings in this paper will be implemented and made
publicly available. Such a prototype will enable us to examine
the applicability and usability of our approach as well as its
overall effectiveness in practical settings.

9 A PLACEHOLDER FOR REBUTTAL

ACKNOWLEDGMENT
A placeholder for acknowledging the funding agency

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Domain-Specific Analysis of Mobile App Reviews Using Keyword-Assisted Topic ModelsICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

REFERENCES
[1] Charu Aggarwal and Chengxiang Zhai. 2012. A survey of text clustering algo-

rithms. In Mining Text Data. Springer, 77–128.
[2] Nasser Alsaedi, Pete Burnap, and Omer Rana. 2016. Temporal TF-IDF: A high

performance approach for event summarization in twitter. In International Con-
ference on Web Intelligence. 515–521.

[3] Leticia Anaya. 2011. Comparing Latent Dirichlet Allocation and Latent Semantic
Analysis as Classifiers. ERIC.

[4] David Andrzejewski and Xiaojin Zhu. 2009. Latent dirichlet allocation with
topic-in-set knowledge. In Workshop on Semi-Supervised Learning for Natural
Language Processing. 43–48.

[5] David Andrzejewski, Xiaojin Zhu, and Mark Craven. 2009. Incorporating do-
main knowledge into topic modeling via Dirichlet forest priors. In International
Conference on Machine Learning. 25–32.

[6] Lidong Bing, Wai Lam, and Tak-Lam Wong. 2011. Using query log and social
tagging to refine queries based on latent topics. In International Conference on
Information and Knowledge Management. 583–592.

[7] Steven Bird. 2006. NLTK: the Natural Language Toolkit. In Interactive Presentation
Sessions. 69–72.

[8] Stuart Blair, Yaxin Bi, and Maurice Mulvenna. 2020. Aggregated topic models
for increasing social media topic coherence. Applied Intelligence 50, 1 (2020),
138–156.

[9] David Blei, Andrew Ng, and Michael Jordan. 2003. Latent Dirichlet Allocation.
The Journal of Machine Learning research 3 (2003), 993–1022.

[10] Levent Bolelli, Şeyda Ertekin, and Lee Giles. 2009. Topic and trend detection
in text collections using Latent Dirichlet Allocation. In European Conference on
Information Retrieval. 776–780.

[11] Gerlof Bouma. 2009. Normalized (pointwise) mutual information in collocation
extraction. German Society for Computational Linguistics 30 (2009), 31–40.

[12] Laura Galvis Carreno and Kristina Winbladh. 2013. Analysis of user comments:
An approach for software requirements evolution. In International Conference on
Software Engineering. 582–591.

[13] Dimple Chehal, Parul Gupta, and Payal Gulati. 2021. Implementation and com-
parison of topic modeling techniques based on user reviews in e-commerce
recommendations. Journal of Ambient Intelligence and Humanized Computing 12,
5 (2021), 5055–5070.

[14] Ning Chen, Jialiu Lin, Steven Hoi, Xiaokui Xiao, and Boshen Zhang. 2014. AR-
miner: mining informative reviews for developers from mobile app marketplace.
In International Conference on Software Engineering. 767–778.

[15] Kahyun Choi, Jin Ha Lee, CraigWillis, and Stephen Downie. 2015. TopicModeling
Users’ Interpretations of Songs to Inform Subject Access inMusic Digital Libraries.
In Joined Conference on Digital Libraries. 183–186.

[16] Hans Christian, Mikhael Pramodana Agus, and Derwin Suhartono. 2016. Single
document automatic text summarization using term frequency-inverse docu-
ment frequency (TF-IDF). ComTech: Computer, Mathematics and Engineering
Applications 7, 4 (2016), 285–294.

[17] Andrea De Lucia, Massimiliano Di Penta, Rocco Oliveto, Annibale Panichella, and
Sebastiano Panichella. 2012. Using IRmethods for labeling source code artifacts: Is
it worthwhile?. In International Conference on Program Comprehension. 193–202.

[18] Stefan Debortoli, Oliver Müller, Iris Junglas, and Jan Brocke. 2016. Text min-
ing for information systems researchers: An annotated topic modeling tutorial.
Communications of the Association for Information Systems 39, 1 (2016), 7.

[19] Venkatesh Dhinakaran, Raseshwari Pulle, Nirav Ajmeri, and Pradeep Murukan-
naiah. 2018. App review analysis via active learning: reducing supervision effort
without compromising classification accuracy. In IEEE International Requirements
Engineering Conference. 170–181.

[20] Shusei Eshima, Kosuke Imai, and Tomoya Sasaki. 2020. Keyword assisted topic
models. arXiv preprint arXiv:2004.05964 (2020).

[21] Necmiye Genc-Nayebi and Alain Abran. 2017. A systematic literature review:
Opinion mining studies from mobile app store user reviews. Journal of Systems
and Software 125 (2017), 207–219.

[22] Maria Gomez, Romain Rouvoy, Martin Monperrus, and Lionel Seinturier. 2015.
A recommender system of buggy app checkers for app store moderators. In
International Conference on Mobile Software Engineering and Systems. 1–11.

[23] Hui Guo and Munindar Singh. 2020. Caspar: Extracting and synthesizing user
stories of problems from app reviews. In International Conference on Software
Engineering. 628–640.

[24] Emitza Guzman, Muhammad El-Haliby, and Bernd Bruegge. 2015. Ensemble
methods for app review classification: An approach for software evolution (n).
In International Conference on Automated Software Engineering. 771–776.

[25] Emitza Guzman and Walid Maalej. 2014. How do users like this feature? a fine
grained sentiment analysis of app reviews. In IEEE International Requirements
Engineering Conference. 153–162.

[26] Kazuyuki Higashi, Hiroyuki Nakagawa, and Tatsuhiro Tsuchiya. 2018. Improve-
ment of User Review Classification Using Keyword Expansion (S). In International
Conference on Software Engineering & Knowledge Engineering. 125–124.

[27] Abram Hindle, Christian Bird, Thomas Zimmermann, and Nachiappan Nagappan.
2012. Relating requirements to implementation via topic analysis: Do topics
extracted from requirements make sense to managers and developers?. In IEEE
International Conference on Software Maintenance. 243–252.

[28] Liangjie Hong and Brian Davison. 2010. Empirical study of topic modeling in
twitter. In Workshop on Social Media Analytics. 80–88.

[29] Leonard Hoon, Rajesh Vasa, Jean-Guy Schneider, and Kon Mouzakis. 2012. A
preliminary analysis of vocabulary in mobile app user reviews. In Computer-
Human Interaction Conference. 245–248.

[30] Eduard Hovy, Chin-Yew Lin, et al. 1999. Automated text summarization in
SUMMARIST. Advances in Automatic Text Summarization 14 (1999), 81–94.

[31] Claudia Iacob and Rachel Harrison. 2013. Retrieving and analyzing mobile
apps feature requests from online reviews. In Conference on Mining Software
Repositories. 41–44.

[32] David Inouye and Jugal Kalita. 2011. Comparing twitter summarization al-
gorithms for multiple post summaries. In International Conference on Privacy,
Security, Risk and Trust and International Conference on Social Computing. 298–
306.

[33] Jagadeesh Jagarlamudi, Hal Daumé, and Raghavendra Udupa. 2012. Incorporating
lexical priors into topic models. In Conference of the European Chapter of the
Association for Computational Linguistics. 204–213.

[34] Nishant Jha and Anas Mahmoud. 2018. Using frame semantics for classifying
and summarizing application store reviews. Empirical Software Engineering 23, 6
(2018), 3734–3767.

[35] Elham Khabiri, James Caverlee, and Chiao-Fang Hsu. 2011. Summarizing user-
contributed comments. In International AAAI Conference onWeb and Social Media,
Vol. 5.

[36] Hammad Khalid, Emad Shihab, Meiyappan Nagappan, and Ahmed E Hassan.
2014. What do mobile app users complain about? IEEE software 32, 3 (2014),
70–77.

[37] Mubasher Khalid, Muhammad Asif, and Usman Shehzaib. 2015. Towards im-
proving the quality of mobile app reviews. International Journal of Information
Technology and Computer Science 7, 10 (2015), 35.

[38] Rahim Khan, Yurong Qian, and Sajid Naeem. 2019. Extractive based Text Sum-
marization Using K-Means and TF-IDF. International Journal of Information
Engineering & Electronic Business 11, 3 (2019).

[39] Tuomo Korenius, Jorma Laurikkala, Kalervo Järveli, and Martti Juhola. 2004.
Stemming and lemmatization in the clustering of finnish text documents. In
International Conference on Information and Knowledge Management. 625–633.

[40] Ralf Krestel, Peter Fankhauser, and Wolfgang Nejdl. 2009. Latent Dirichlet
Allocation for tag recommendation. In Recommender Systems Conference. 61–68.

[41] Donny Kristianto. 2021. Winning the Attention War: Consumers in Nine Major
Markets Now SpendMore than Four Hours a Day in Apps. https://www.appannie.
com/en/insights/market-data/q1-2021-market-index/. Accessed: 2021-05-31.

[42] Zijad Kurtanović and Walid Maalej. 2017. Mining user rationale from software
reviews. In IEEE International Requirements Engineering Conference. 61–70.

[43] Retno Kusumaningrum, Ihsan Aji Wiedjayanto, Satriyo Adhy, et al. 2016. Clas-
sification of Indonesian news articles based on Latent Dirichlet Allocation. In
International Conference on Data and Software Engineering. 1–5.

[44] Jey Han Lau, David Newman, and Timothy Baldwin. 2014. Machine reading
tea leaves: Automatically evaluating topic coherence and topic model quality. In
Conference of the European Chapter of the Association for Computational Linguistics.
530–539.

[45] Xiaozhou Li, Boyang Zhang, Zheying Zhang, and Kostas Stefanidis. 2020. A
Sentiment-Statistical Approach for Identifying Problematic Mobile App Updates
Based on User Reviews. Information 11, 3 (2020), 152.

[46] Clare Llewellyn, Claire Grover, and Jon Oberlander. 2014. Summarizing news-
paper comments. In International AAAI Conference on Web and Social Media,
Vol. 8.

[47] Mengmeng Lu and Peng Liang. 2017. Automatic classification of non-functional
requirements from augmented app user reviews. In International Conference on
Evaluation and Assessment in Software Engineering. 344–353.

[48] Stacy Lukins, Nicholas Kraft, and Letha Etzkorn. 2008. Source Code Retrieval
for Bug Localization Using Latent Dirichlet Allocation. In Reverse Engineering.
155–164.

[49] Stacy Lukins, Nicholas Kraft, and Letha Etzkorn. 2010. Bug localization using
Latent Dirichlet Allocation. Information and Software Technology 52, 9 (2010),
972–990.

[50] Walid Maalej, Zijad Kurtanović, Hadeer Nabil, and Christoph Stanik. 2016. On
the automatic classification of app reviews. Requirements Engineering 21, 3 (2016),
311–331.

[51] Walid Maalej and Hadeer Nabil. 2015. Bug report, feature request, or simply
praise? on automatically classifying app reviews. In IEEE International Require-
ments Engineering Conference. 116–125.

[52] Anas Mahmoud and Gary Bradshaw. 2017. Semantic topic models for source
code analysis. Empirical Software Engineering 22, 4 (2017), 1956–2000.

[53] Inderjeet Mani, Marc Verhagen, Ben Wellner, Chungmin Lee, and James Puste-
jovsky. 2006. Machine learning of temporal relations. In International Conference

11

https://www.appannie.com/en/insights/market-data/q1-2021-market-index/
https://www.appannie.com/en/insights/market-data/q1-2021-market-index/

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

on Computational Linguistics and Meeting of the Association for Computational
Linguistics. 753–760.

[54] Usha Manjari, Syed Rousha, Dasi Sumanth, and Sirisha Devi. 2020. Extractive
Text Summarization from Web pages using Selenium and TF-IDF algorithm. In
International Conference on Trends in Electronics and Informatics (ICOEI). 648–652.

[55] Stuart McIlroy, Nasir Ali, Hammad Khalid, and Ahmed E Hassan. 2016. Analyzing
and automatically labelling the types of user issues that are raised in mobile app
reviews. Empirical Software Engineering 21, 3 (2016), 1067–1106.

[56] Rishabh Mehrotra, Scott Sanner, Wray Buntine, and Lexing Xie. 2013. Improving
LDA topic models for microblogs via tweet pooling and automatic labeling. In
Conference on Research and Development in Information Retrieval. 889–892.

[57] Ani Nenkova and Lucy Vanderwende. 2005. The impact of frequency on summa-
rization. Microsoft Research, Redmond, Washington, Tech. Rep. MSR-TR-2005 101
(2005).

[58] Xiaochuan Ni, Jian-Tao Sun, Jian Hu, and Zheng Chen. 2009. Mining multilingual
topics from Wikipedia. In International Conference on World Wide Web. 1155–
1156.

[59] Ehsan Noei, Feng Zhang, and Ying Zou. 2019. Too many user-reviews, what
should app developers look at first? Transactions on Software Engineering (2019).

[60] Jeungmin Oh, Daehoon Kim, Uichin Lee, Jae-Gil Lee, and Junehwa Song. 2013.
Facilitating developer-user interactions with mobile app review digests. In CHI
Extended Abstracts on Human Factors in Computing Systems. 1809–1814.

[61] Annibale Panichella, Bogdan Dit, Rocco Oliveto, Massimilano Di Penta, Denys
Poshynanyk, and Andrea De Lucia. 2013. How to effectively use topic models for
software engineering tasks? an approach based on genetic algorithms. In 2013
35th International Conference on Software Engineering (ICSE). IEEE, 522–531.

[62] Sebastiano Panichella, Andrea Di Sorbo, Emitza Guzman, Corrado Visaggio,
Gerardo Canfora, and Harald Gall. 2015. How can i improve my app? Classifying
user reviews for software maintenance and evolution. In International Conference
on Software Maintenance and Evolution. 281–290.

[63] Sebastiano Panichella, Andrea Di Sorbo, Emitza Guzman, Corrado Visaggio, Ger-
ardo Canfora, and Harald Gall. 2016. Ardoc: App reviews development oriented
classifier. In International Symposium on Foundations of Software Engineering.
1023–1027.

[64] Dae Hoon Park, Mengwen Liu, ChengXiang Zhai, and Haohong Wang. 2015.
Leveraging user reviews to improve accuracy for mobile app retrieval. In In-
ternational Conference on Research and Development in Information Retrieval.
533–542.

[65] Elizabeth Poché, Nishant Jha, Grant Williams, Jazmine Staten, Miles Vesper, and
Anas Mahmoud. 2017. Analyzing user comments on YouTube coding tutorial
videos. In International Conference on Program Comprehension. 196–206.

[66] PYMNTS. 2021. High-Speed Traders Pay Robinhood $331 Million
In Q1 To Execute Trades. https://www.pymnts.com/earnings/2021/
high-speed-traders-pay-robinhood-331-million-dollars-q1-execute-trades/.
Accessed: 2021-06-24.

[67] Zhilei Qiao, Xuan Zhang, Mi Zhou, Gang Alan Wang, and Weiguo Fan. 2017. A
domain oriented LDA model for mining product defects from online customer
reviews. (2017).

[68] Research and Markets. 2021. Global Online Food Delivery Services Market Report
2021: Market is Expected to Reach $192.16 Billion in 2025, from $126.91 Billion
in 2021 - Long-term Forecast to 2030. https://www.prnewswire.com. Accessed:
2021-07-24.

[69] Michael Röder, Andreas Both, and Alexander Hinneburg. 2015. Exploring the
space of topic coherence measures. In International Conference on Web Search
and Data Mining. 399–408.

[70] Furqan Rustam, Arif Mehmood, Muhammad Ahmad, Saleem Ullah, Dost Muham-
mad Khan, and Gyu Sang Choi. 2020. Classification of shopify app user reviews
using novel multi text features. IEEE Access 8 (2020), 30234–30244.

[71] Andrea Di Sorbo, Sebastiano Panichella, Carol Alexandru, Junji Shimagaki, Cor-
rado Visaggio, Gerardo Canfora, and Harald Gall. 2016. What would users change
in my app? summarizing app reviews for recommending software changes. In
International Symposium on Foundations of Software Engineering. 499–510.

[72] Statista. 2021. Number of available apps in the Apple App Store
from 2008 to 2020. https://www.statista.com/statistics/268251/
number-of-apps-in-the-itunes-app-store-since-2008/. Accessed: 2021-
05-31.

[73] Levi Sumagaysay. 2020. The pandemic has more than doubled food-delivery apps’
business. Now what? https://www.marketwatch.com. Accessed: 2021-07-24.

[74] Shaheen Syed and Marco Spruit. 2017. Full-text or abstract? Examining topic
coherence scores using Latent Dirichlet Allocation. In International Conference
on Data Science and Advanced Analytics. 165–174.

[75] Maria Terzi, Maria-Angela Ferrario, and Jon Whittle. 2011. Free text in user
reviews: Their role in recommender systems. In Workshop on Recommender
Systems and the Social Web at International Conference on Recommender Systems.
45–48.

[76] Stephen Thomas, Meiyappan Nagappan, Dorothea Blostein, and Ahmed Hassan.
2013. The impact of classifier configuration and classifier combination on bug
localization. IEEE Transactions on Software Engineering 39, 10 (2013), 1427–1443.

[77] Kai Tian, Meghan Revelle, and Denys Poshyvanyk. 2009. Using Latent Dirichlet
Allocation for automatic categorization of software. In International Working
Conference on Mining Software Repositories. 163–166.

[78] Miroslav Tushev, Fahimeh Ebrahimi, and Anas Mahmoud. 2020. Digital Discrim-
ination in Sharing Economy A Requirements Engineering Perspective. In IEEE
International Requirements Engineering Conference. 204–214.

[79] Rajesh Vasa, Leonard Hoon, Kon Mouzakis, and Akihiro Noguchi. 2012. A
preliminary analysis of mobile app user reviews. In Computer-Human Interaction
Conference. 241–244.

[80] Jianyu Wang, Rui Wen, Chunming Wu, Yu Huang, and Jian Xion. 2019. Fdgars:
Fraudster detection via graph convolutional networks in online app review
system. In World Wide Web Conference. 310–316.

[81] Grant Williams and Anas Mahmoud. 2017. Mining Twitter Feeds for Software
User Requirements. In International Requirements Engineering Conference. 1–10.

[82] Grant Williams, Miroslav Tushev, Fahimeh Ebrahimi, and Anas Mahmoud. 2020.
Modeling user concerns in Sharing Economy: the case of food delivery apps.
Automated Software Engineering 27, 3 (2020), 229–263.

[83] Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng. 2013. A biterm topic
model for short texts. In International Conference on World Wide Web. 1445–1456.

[84] Hui Yang and Peng Liang. 2015. Identification and Classification of Requirements
from App User Reviews.. In International Conference on Software Engineering &
Knowledge Engineering. 7–12.

[85] Wayne Xin Zhao, Jing Jiang, Jianshu Weng, Jing He, Ee-Peng Lim, Hongfei Yan,
and Xiaoming Li. 2011. Comparing twitter and traditional media using topic
models. In European Conference on Information Retrieval. 338–349.

12

https://www.pymnts.com/earnings/2021/high-speed-traders-pay-robinhood-331-million-dollars-q1-execute-trades/
https://www.pymnts.com/earnings/2021/high-speed-traders-pay-robinhood-331-million-dollars-q1-execute-trades/
https://www.statista.com/statistics/268251/number-of-apps-in-the-itunes-app-store-since-2008/
https://www.statista.com/statistics/268251/number-of-apps-in-the-itunes-app-store-since-2008/

	Abstract
	1 Introduction
	2 Background
	2.1 Latent Dirichlet Allocation (LDA)
	2.2 Keyword-Assisted Topic Modeling

	3 Approach
	3.1 Informative Review Extraction
	3.2 Seed Generation
	3.3 Topic generation

	4 Evaluation
	4.1 Data Collection
	4.2 Evaluation measures
	4.3 Model Configuration
	4.4 Evaluation Results

	5 Discussion and Impact
	6 Related Work
	7 Threats to Validity
	8 Conclusions
	9 A Placeholder for rebuttal
	References

