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Domain-Specific Analysis of Mobile App Reviews Using
Keyword-Assisted Topic Models

Anonymous Author(s)

ABSTRACT
Mobile application (app) reviews contain valuable information for
app developers. A plethora of supervised and unsupervised tech-
niques have been proposed in the literature to synthesize useful
user feedback from app reviews. However, traditional supervised
classification algorithms require extensive manual effort to label
ground truth data, while unsupervised text mining techniques, such
as topic models, often produce suboptimal results due to the sparsity
of useful information in the reviews. To overcome these limitations,
in this paper, we propose a fully automatic and unsupervised ap-
proach for extracting useful information from mobile app reviews.
The proposed approach is based on keyATM, a keyword-assisted
approach for topic modeling. keyATM overcomes the problem of
data sparsity by using seeding keywords extracted directly from
the review corpus. These keywords are then used to generate mean-
ingful domain-specific topics. Our approach is evaluated over two
datasets of mobile app reviews sampled from the domains of Invest-
ing and Food Delivery apps. The results show that our approach
significantly outperforms traditional topic modeling techniques by
producing more coherent topics.

ACM Reference Format:
Anonymous Author(s). 2021. Domain-Specific Analysis of Mobile App Re-
views Using Keyword-Assisted Topic Models. In Proceedings of The 44th
International Conference on Software Engineering (ICSE 2022). ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The explosive growth and widespread of mobile technology in
the past decade has changed the way software is produced and
consumed. More users now rely on mobile software than ever
before. According to App Annie - the mobile market data and
analytics platform, an average user spends around 4.2 hours a day
using apps [41]. In response to this unprecedented demand, mobile
app marketplaces, such as Google Play and the Apple App Store
has grown dramatically in size, offering users virtually unlimited
choices of apps. For instance, as of 2020, more than four million
apps were available to download on the Apple App Store alone [72].

Popular app stores enable users to share their experience with
app developers via ratings and textual reviews. This unique chan-
nel of user feedback created an opportunity for app developers to
monitor their end users’ reactions to the different releases of their
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app. Recently, analyzing mobile app reviews has attracted a con-
siderable attention from the research community [21]. Researchers
have utilized supervised and unsupervised machine learning algo-
rithms to extract informative feedback from user reviews, including
feature requests and bug reports as well as user goals and their
rationale [14, 24, 42, 45, 51, 62, 71].

In general, review mining techniques achieve adequate levels
of accuracy, however, they suffer from several limitations. For in-
stance, supervised classification techniques rely on the presence of
ground-truth datasets which typically require significant manual
effort to generate [24, 42, 62, 70]. Furthermore, these techniques
are constrained to a single rubric of predefined categories and, as
a result, require additional data and model tweaking to general-
ize over domain-specific feedback [82]. For example, users of the
Ridesharing app Uber might complain about wait times and rates,
while users of the Investing app Robinhood might raise concerns
about the app’s requests for their social security or bank informa-
tion. These categories of user feedback can be easily missed in the
ground truth data. Consequently, a one-size-fits-all approach may
not be suitable for domain-specific user feedback [21, 67, 82].

To avoid the drawbacks of supervised techniques, unsupervised
topic modeling techniques, such as Latent Dirichlet Allocation
(LDA) [9], have been applied to extract useful information from app
store reviews [22, 25, 26, 31, 59, 64]. However, LDA does not per-
form well when dealing with small and unstructured text [6, 28, 83].
Short text artifacts, such as user reviews [79], do not typically con-
tain enough information for statistical bag-of-words models to build
semantic connections between words [1]. Therefore, generated top-
ics can be hard to interpret and rationalize and often require an
extensive calibration of hyperparameters to avoid misclassifica-
tion [12, 28, 85].

To overcome these limitations, in this paper we propose a new
approach for extracting useful user feedback from app store re-
views. The proposed approach is based on the keyword-assisted
topic model keyATM [33]. keyATM relies on a set of representative
seed words to model the topics of a large document collection by
finding evidence on the underrepresented topics. These seeding
words can be extracted from the document corpus automatically by
applying automated text summarization techniques. Our proposed
approach is evaluated using two datasets of user reviews sampled
from the domains of Investing and Food Delivery apps. The quality
of generated topics is assessed using a set of intrinsic and extrinsic
measures of topic coherence [8].

The rest of this paper is organized as follows. Section 2 formally
describes LDA and its extension, keyATM. Section 3 introduces our
approach. Section 4 evaluates our approach over two datasets of
mobile app reviews. Section 5 discusses our main findings and their
potential implications. Section 6 describes related work. Section 7
addresses the limitations of our study. Finally, Section 8 concludes
our paper and discusses future work.
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2 BACKGROUND
Topic models are statistical techniques that are commonly used for
discovering latent topics in text collections. In topic modeling, a
topic can be described as a collection of words which represent
a thematic concept in a corpus, and documents in the corpus are
represented as probabilistic distributions over these topics. In what
follows, we introduce the most commonly used topic modeling
approach, LDA, and its extension - the keyword-assisted topic
model (keyATM).

2.1 Latent Dirichlet Allocation (LDA)
Introduced by Blei et. al [9], LDA is an unsupervised technique for
modeling topics in a collection of documents. LDA utilities word co-
occurrence information in order to group related words into a single
topic. To infer topics from a corpus of documents, LDA represents
documents as random mixtures over latent topics. Formally, LDA
calculates two Dirichlet distributions: the word-topic distribution
ϕk for topic k and the document-topic distribution θd for document
d . The hyperparameters α and β are typically used as priors for ϕ
and θ . For each word i in the dataset, a topic zi is drawn from θd
and the wordwi is drawn from ϕzi distributions.

LDA’s usecases range from traditional topic extraction for long
texts [10, 43, 58, 74] to tag recommendation for search engines [40],
to software systems categorization [77], and bug localization [49].
Despite its advantages, LDA suffers from several limitations when
it comes to processing online user-generated text. For instance,
in the context of app feedback analysis, mobile app reviews are
often short, personal, and contain colloquial terms. Thus, they are
too restricted semantically for complex distributional approaches
such as LDA to operate, leading LDA to generate random topics
or even overfit the data [3, 56, 60, 75, 85]. Furthermore, LDA, by
design, tends to generalize over larger topics in order to better
model frequently occurring words. Consequently, more specific,
nuanced topics are often left ignored [33]. This limitation is critical
for user review analysis as useful information in user reviews is
often domain-specific [21, 67, 78, 82].

2.2 Keyword-Assisted Topic Modeling
Keyword-assisted topic modeling (keyATM) is a novel technique
that has been proposed to improve upon traditional topic models,
such as LDA [20, 33]. The key idea behind keyATM is that it in-
corporates user-defined seed words for topic-word distributions.
Each potential topic can be supplemented by specific keywords
that are believed to describe a theme. Formally, keyATM modifies
the traditional LDA algorithm in two ways:

(1) The word-topic distribution ϕk is replaced with a “mix-
ture” of two distributions: a seed-topic distribution ϕs and
a regular-topic distribution ϕr . The seed-topic distribution
can only select words from the initial seed set, while the
regular-topic distribution may select any words in the cor-
pus, including the seed words. The parameter πk controls
the probability of drawing a word from either ϕs or ϕr .

(2) To draw the document-topic distribution θd , for each docu-
ment d , a binary vector ®b of the length S (number of seeded
topics) is generated. ®b takes the values of 1 if d contains any
keyword from a respective seed set and 0 otherwise. Next, a

document-group distribution ζ d is sampled from ®b with a
hyperparameter τ from which a group variable д is drawn.
Each group represents a seed set selected from the corpus.
Finally, the group-topic distribution ψд is used as prior to
draw θd .

Algorithm 1 shows the complete keyword-assisted topic model’s
generative process [33].

Algorithm 1 keyATM’s topic generative process.
1: for topic k = 1 . . .T do
2: choose regular topic distribution ϕrk ∼ Dir(βr )
3: choose seeded topic distribution ϕsk ∼ Dir(βs )
4: choose parameter πk ◃ prob. of drawing from seeded topic
5: end for
6: for seed set s = 1 . . . S do
7: choose group-topic distribution ψs ∼ Dir(α ) ◃ of length T
8: end for
9: for document d = 1 . . . D do
10: choose a binary vector ®b ◃ of length S
11: choose a document-group distribution ζ d ∼ Dir(τ ®b)
12: choose a group variable д ∼Mult(ζ d )
13: choose θd ∼ Dir(ψд ) ◃ of length T
14: for word i = 1 . . . Nd do
15: choose a topic zi ,d ∼Mult(θd )
16: choose xi ∼ Bern(πzi ) ◃ choose which topic distr. to draw from
17: if xi is 0 then
18: select a word wi ∼ Mult(ϕrzi ) ◃ from regular
19: else
20: select a word wi ∼ Mult(ϕszi ) ◃ from seeded
21: end if
22: end for
23: end for

Our main assumption in this paper is that keyATM can overcome
the limitations of LDA when dealing with mobile app reviews.
In particular, to address the domain-specificity problem, keyATM
utilizes a binary vector ®b which elevates the less-common topics
for the provided seed words. These seed words can be extracted in
advance based on expert opinion in order to supplement keyATM
with a high-level overview of the user review corpus. The main
advantage of keyATM is that once the initial seeds are provided,
keyATM can collect additional semantically-related keywords from
regular topics (line 2, line 16). By combining seeded and regular
distributions, keyATM generates more cohesive and focused topics,
overcoming the main drawback of using LDA when it comes to
modeling semantically-restricted user reviews.

3 APPROACH
The proposed approach is depicted in Fig. 1. In general, this ap-
proach can be divided into three main steps. In the first step, we
apply several heuristics to extract informative user reviews from
a specific application domain. In the second step, we preprocess
and summarize extracted reviews in order to generate a represen-
tative set of important keywords, or seeds for the corpus. In the
third step, seeds are selected and fed into keyATM to generate a
topic distribution over the extracted reviews. In what follows, we
describe each of these phases along with illustrative examples.
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Figure 1: Our proposed approach for app review topic modeling

3.1 Informative Review Extraction
Mobile app reviews vary in quality. Previous research has shown
that app reviews do not follow a well-defined structure and often
contain spelling fluctuations, colloquial terms, and spam [37, 80].
Therefore, a large proportion of app store reviews is simply un-
informative [37]. As topic models are particularly susceptible to
generating uninterpretable topics from semantically-poor docu-
ments [18], the first step of our approach is to improve the quality
of our review corpus by filtering out uninformative feedback.

To detect informative reviews, we adopt Guo and Singh’s ap-
proach for synthesizing potentially meaningful user stories from
mobile app reviews [23]. A user story can be defined as a relation-
ship between an action that a user took and a problem that an
app produced in response to that action. A user story describes
users’ experience and outcome when interacting with their apps’
specific functionality. For example, a user might complain that their
navigation app loses GPS signal when in drive mode. Such a story
contains potentially useful information for app developers as it out-
lines the condition (in drive mode) under which a problem (GPS lost
signal) occurred. These stories are commonly present in low-star
app reviews (one and two stars) given that app problems are often
accompanied by low user ratings [29, 36, 79]. Our expectation is
that topics modeled after reviews with user stories will be more
coherent, and thus, more interpretable.

To identify reviews that might contain user stories, common tem-
poral conjunctions are used, including words such as after, as soon
as, before, every time, then, until, when, whenever, while, and during.
Temporal conjunctions indicate temporal and causal ordering of
events that was found to be particularly helpful for mitigating the
problems of text sparseness [53]. For example, consider the four app
reviews in Example 1. R1, R2, and R3 are informative reviews that
contain user stories - action-problem pairs (temporal conjunctions
are underlined). R1 describes an action of scroll through the pages
and the problem - a crash. Such a review can help our topic model
to build a semantic association between crash and scrolling. R4 is a
false positive.

Example 1

• R1: This app crashes when I scroll through the pages.
• R2: They want your SSN before you can even look. It’s
definitely a scam.

• R3: To verify identity it requires u take a picture but
then immediately crashes.

• R4: Still waiting, after a month, to be approved.

3.2 Seed Generation
Under this step of our approach, we seek to generate sets of repre-
sentative seeds (keywords) from extracted user reviews. To correctly
model the underlying latent topic structure, these keywords have
to be representative of as many themes in the review corpus as
possible [33]. Therefore, the keyword generation process requires
a priori knowledge of the domain of interest which might not be
readily available to the researcher [4, 5]. For example, to model
the representative topics of app reviews in the domain of Investing
apps, the researcher has to know the specific themes that users dis-
cuss in the reviews and the corresponding keywords to generalize
over these themes. Extracting these keywords involves manually
classifying user reviews into representative topics, which nullifies
the advantage of unsupervised techniques. To address these limita-
tions, in our adaptation of keyATM, instead of determining seeds
manually, we use extractive summarization.

A summary can be described as a short and concise description
that encompasses the main theme of a collection of documents
related to a similar topic [35, 46]. In extractive summarization, text
artifacts (reviews, comments, tweets) which contain the most im-
portant (representative) keywords in the corpus are extracted as
potential summaries of the entire corpus. In a sense, each generated
summary represents a potential latent theme in a collection of doc-
uments, thus can then be used to provide representative keywords
(seeds) for keyATM. Common extractive summarization techniques,
such as Hybrid-TF.IDF [32] and SumBasic [57], have been applied to
summarize unstructured online user feedback (e.g., tweets, YouTube
comments, and user reviews) [34, 65, 81, 82] and have been shown
to achieve very high levels of agreement with human-generated
summaries. Based on these observations, in our analysis, we utilize
such techniques to extract the initial set of seeding keywords from
the corpus.

To generate summaries from mobile app user reviews, Hybrid
TF.IDF [32] is often utilized. TF.IDF consists of two components:
1) TF - Term Frequency, or how many times a term appears in a
document and 2) IDF - Inverse Document Frequency, or how much
information a term provides. TF.IDF-based methods have shown
acceptable accuracy levels across a variety of text summarization
tasks [2, 16, 30, 38, 54]. However, short texts, such as user reviews,
pose a unique challenge to TF.IDF. In particular, because short texts
contain only a handful of words, the probability of individual terms
occurring multiple times in a single document is low. Therefore,
the majority of words get assigned the same TF value. Hybrid
TF.IDF addresses this issue by calculating the term frequency as
the total frequency of term t across all documents, divided by the

3
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total number of terms. Formally, Hybrid TF.IDF weight for a term t
can be computed as:

Hybrid TF.IDF(t,d) =
ft ,D∑
ft ,d

× log
|D |

|d ∈ D : t ∈ d |
(1)

where ft ,D is the count of term t in all documents,
∑

ft ,d is the total
count of all terms in the corpus, |D | is the number of documents in
the corpus, and |d ∈ D : t ∈ d | is the number of documents that con-
tain t . The total weight of a document d is calculated by summing
up all terms’ weights. However, in the current form, Hybrid TF.IDF
would be biased toward longer documents as they contain more
terms. To work around this problem, a normalization factor nf is
introduced. The modified Hybrid TF.IDF formula for a document d
can be defined as follows:

Hybrid TF.IDF(d) =
1

max(nf , |d |)
×

|d |∑
i=1

Hybrid TF.IDF(ti ,d) (2)

The normalization factor is typically defined as the upper-bound
of the required summary length (number of words) and can be
determined experimentally. The actual summarization is then per-
formed by ranking the documents by their total weight. To avoid a
situation where summaries with similar words are ranked together,
a similarity threshold is used, calculated as the cosine of the angle
between the vectorized representations of each two summaries. An
optimal similarity threshold can be set to a small positive number
in advance, depending on the desired uniqueness of summaries. To
illustrate our summarization step, consider the top-4 summaries in
Example 2 generated for a dataset of reviews sampled from the do-
main of Investing apps with the threshold of 0.1 (no two summaries
should have a cosine similarity greater than 0.1). Each summary
encompasses a separate topic, such as taking money from user’s
account (S1), app crashing (S2), problems with selling a stock (S3),
and issues with customer support (S4).

Example 2

• S1: This takes out money even after you close your ac-
count...

• S2: This app now crashes 100% of the time, every time I
open it

• S3: Allowed me to buy stock, but when i tried to sell my
stock they didn’t sell it

• S4: Great until you need customer support, once you
need support you’re on your own

To improve the accuracy of summarization, text preprocessing
strategies are often used. Before generating summaries, extracted
app reviews are first converted to lowercase and tokenized into
individual words, with punctuation, URLs, and other special sym-
bols removed. Additional splitting strategies, such as splitting digits
and alpha-characters are performed (e.g. 2hrs becomes 2 hrs). Eng-
lish stop-words, such as will, this, it, are removed based on the
list provided in NLTK package [7]. Additional cohort-specific stop-
words are manually identified and added to the list. These words
include app names (robinhood, acorn), frequent words (yeah, well),

and short 1-2 letter words that do not contain any semantic in-
formation. Finally, lemmatization is applied to the resulting list of
words. Lemmatization is a normalization technique which reduces
the number of distinct entries in the data. More specifically, lemma-
tization converts a word into its dictionary form. This process is
applied to improve the performance of clustering algorithms by
collapsing different forms of the same word into a single entity [39].
Example 3 presents the preprocessed summaries from Example 2.

Example 3

• S1: take, money, even, close, account
• S2: app, crash, time, every, time, open
• S3: allow, buy, stock, try, sell, stock, sell
• S4: great, need, customer, support, need, support

3.3 Topic generation
Since each summary succinctly describes a separate theme, seeds
are generated by obtaining distinct terms from the preprocessed
summaries. For example, the terms great, need, customer, and support
are extracted from S4 to describe a theme discussing issues with
customer support. These seeds are then supplied to keyATM for
the topic modeling step. Our main expectation is that these terms
should provide enough semantic information for keyATM to be
able to generalize over the whole dataset of extracted user reviews.
In what follows, we empirically evaluate our assumption using two
datasets of mobile app reviews.

4 EVALUATION
In this section we illustrate the operation of our proposed topic gen-
eration process over two datasets of user reviews sampled form the
domains of Investing and Food Delivery apps. We further evaluate
our generated topics by comparing them to the topics generated by
LDA. Our main research question is:How well does our approach
perform in comparison to LDA?

4.1 Data Collection
To demonstrate the operation of our approach, we apply it on
two datasets of mobile app reviews sampled from the domains of
Investing and Food Delivery apps. Investing apps have become
increasingly popular in recent years due to the increasing inter-
est in cryptocurrency trading. Zero-commission trading fees and
continuous media coverage have multiplied the popularity effect
of these apps by bringing in millions of new first-time traders. For
example, Robinhood, a simplified Investing app, reported that more
than 6 million new users joined the platform in 2021 right after the
WallStreetBets subreddit controversy [66]. Similarly, the domain of
Food Delivery has experienced an unprecedented growth during
the COVID-19 pandemic as the demand for Food Delivery services
has significantly increased. For example, the four major Food Deliv-
ery apps - DoorDash, UberEats, GrubHub, and Postmates reported
a significant increase in revenue during the stay-at-home order of
2020 [73]. In fact, the market segment of food delivery apps, cur-
rently estimated at $126.91 billion, is expected to grow to $192.16
billion by 2025 [68].
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Table 1: The number of user reviews extracted for each app
in our dataset.

Investing Food delivery
App Reviews App Reviews
Robinhood 7872 Uber Eats 58933
Acorn 4342 DoorDash 34917
Stash 2445 Grubhub 17784
E*TRADE 1605 Postmates 17610
Fidelity 1496 Seamless 1432
TD Ameritrade 1403
Schwab 1079
Personal Capital 509

To collect user reviews for our analysis, we selected the most
popular apps from both domains. To identify these apps, the top-100
apps in the category Finance (Investing) and Food&Drink (Food
Delivery) on Google Play and the Apple App Store were exam-
ined. Apps, which met the following criteria were included in our
analysis:

(1) For an app to be included in our analysis, we only consid-
ered apps with 10,000 reviews or more. This number of re-
views is necessary in order to include only popular and
well-established apps in our analysis.

(2) For the Investing domain, banking “all-in-one” apps were
excluded as the majority of these apps did not provide Invest-
ing services. For Food Delivery apps, specific restaurants’
delivery apps, such as Papa John’s Pizza & Delivery official
app, were also excluded.

After examining the top-100 apps, eight Investing and five Food
Delivery apps were included. For each of these apps, we collected
all textual reviews and star ratings on the Apple App Store and
Google Play using Python web scrappers12. Overall, 370,820 app
reviews were collected for our set of Investing apps and 266,544
reviews were collected for the set of Food Delivery apps. Out of
these reviews, only 1-2 star rating reviews which included user
stories (See Section 3.1) were considered in our analysis, a total
of 20,760 reviews for the domain of Investing apps and 130,676
reviews for the Food Delivery domain. The distribution of extracted
reviews over our apps is shown in Table 1.

4.2 Evaluation measures
Evaluating topic models can be a challenging task. Due to the fact
that there is typically no ground-truth document-topic distribution
that exists for every corpus, there is not a single objective metric to
evaluate the quality of generated topics. To address this challenge,
several topic evaluation techniques have been proposed in the
literature. From among these techniques, Normalized Pointwise
Mutual Information have been found to be closely correlated with
human judgment of topic quality [15, 44, 69].

Introduced by Bouma [11], Normalized Pointwise Mutual Infor-
mation (NPMI) is a information-theoretic measure of information
overlap between words. NPMI can be measured by counting how

1https://pypi.org/project/app-store-scraper/
2https://pypi.org/project/google-play-scraper/

many times two words appear in the same document versus how
many times they appear separately. Formally, for two wordswi and
w j NPMI can be calculated as:

NPMI(wi ,w j ) =
log p(wi ,w j )

p(wi )p(w j )

− logp(wi ,w j )
(3)

where p(wi ,w j ) is the number of documents in whichwi andw j ap-
pear together, and p(wi )p(w j ) is the the number of documents con-
tainingwi andw j respectively. The numerator of the NPMI formula
is then normalized by dividing it by the negative log-transformed
count ofwi andw j appearing together. This results in a value be-
tween -1 whenwi andw j never occur together and 1 whenwi and
w j only occur together.

The underlying assumption behind using NPMI for evaluating
topic quality is that words of cohesive topics should be well con-
nected, or have relatively high average pairwise NPMI. For example,
Fig. 2 shows a sample NPMI graph of a word set sampled from the
review corpus of the Food Delivery domain. The graph shows that
the words cold, driver, food, lost, late, and hot form a dense-set of
well-connected nodes (words). This is expected given that these
words frequently appear in the same reviews, for example “drivers
are always either late or lost I always get my food cold and my drink
hot.” The word discount, while connected to food, stands at a fur-
ther semantic distance from other words as it does not appear as
frequently with them in the same reviews.

There are two main strategies to compute NPMI: intrinsic and ex-
trinsic [8]. Intrinsic NPMI is calculated based on the co-occurrence
of topic words within the corpus. In contrast, the extrinsic strategy
uses external datasets of human-produced textual knowledge, such
as Wikipedia, to compute the co-occurrence, and thus semantic
relatedness, of words. Intrinsic NPMI scores computed over the
corpus can show how well the model learned the underlying data,
or the extent that topic models accurately represent the content of
a corpus. Extrinsic NPMI, on the other hand, shows how common
generated topics are in daily language, which can be analogous to
how a human examining the quality of topics would decide whether
they are coherent or not [69].

In our analysis, we employ both strategies for computing topic
coherence. For extrinsic evaluation, we download the entire English
Wikipedia dump3 of October 2017. The dump includes 5 million
articles, 133 word-length per article on average, packed into a 16
GB JSON file. Each article was tokenized and preprocessed by con-
verting into lowercase and removing special non-ASCII symbols. To
calculate the coherence of a given topic is calculated as the average
NPMI between its 10 most probable words in a topic (a total of
45 unique word-pairs). Formally, our topic coherence measure is
calculated as:

coherence(t) =
1
45

×

9∑
i=1

10∑
j=i+1

NPMI(wi ,w j ) (4)

3https://dumps.wikimedia.org/enwiki/
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Figure 2: A connected NPMI graph of words extracted from
the food delivery review corpus.

4.3 Model Configuration
To compare the performance of our approach to the baseline (LDA),
we perform hyperparameter tuning in order to achieve the maxi-
mum coherence score possible over both datasets. In addition to
the number of topics (K), LDA has two hyperparameters, α and
β . We use the implementation of LDA from the Gensim Python
package4, where α is inferred from the corpus automatically and
β is set to 1/K . As a standard practice of topic models evaluation,
we train LDA model for K = {10, 20, ..., 100}. These bounds of K
were selected based on the coherence score, where a sharp decline
indicates that a model no longer can generate coherent topics.

One of the main parameters that determine the performance of
our approach is the quality of the seeding words. Smaller number of
seeds might not convey enough semantic information for keyATM
to capture meaningful topics, while larger number of keywords
might be too general to form cohesive topics. To optimize of set of
seeds, we calculated the pairwise NPMI scores for each seeds in each
individual summary review. We then attempt to optimize the set of
seeds by removing the bottom n-th percentile of the seeds (seeding
wordswhich share the lowest average pairwise similarity with other
seeds). The main assumption is that removing these potentially
unrelated words we can produce a more focused seeds, and thus,
better topics. For example, Table 2 shows the average NPMI score
for a group of words sampled from the summary reviews of the
Food Delivery corpus. Words such as refuse, first, and add can
be removed due to their low average pairwise similarity to other
words in the group. To test how many seeds to consider, we include
four model configurations in our analysis with n = {0, 5, 15, 25},
where keyATM_n refers to keyATM being trained after the n% of
seeds at the lower end of NMPI score are removed. Each keyATM
configuration is then trained for different value of K to determine
the optimal ⟨n,K⟩ configuration for the review corpus.

4.4 Evaluation Results
Areplication package of our analysis, including our datasets,
is publicly available5. To answer our research question, we trained
an LDA model and each configuration of keyATM over our two
domains of app reviews for various K values. The coherence scores
for the trained models are shown in Fig. 3. For each K , we com-
pared the topic coherence scores by performing an independent
two-tailed t-test between LDA and each configuration of keyATM.
The results of this test are presented in Tables 3 and 4.

4https://pypi.org/project/gensim/
5https://github.com/icse2022submission/submission1

Table 2: Pairwise NPMI scores (intrinsic) over an example
keyword set in the Food Delivery domain, sorted by average
score. “refuse” is removed at bottom 5th, “first” is removed
at bottom 15th, and “add” is removed at bottom 25th respec-
tively.
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st
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service 1 0.10 0.14 0.07 0.08 0.06 0.13 0.05 0.01 0.06 0.10
charge 0.10 1 0.32 0.08 0.08 0.09 0.05 0.07 0.10 0.05 0.07
fee 0.14 0.32 1 0.13 0.09 0.15 0.06 0.04 0.24 0.04 0.00
large 0.07 0.08 0.13 1 0.11 0.20 0.06 0.10 0.10 0.07 0.07
make 0.08 0.08 0.09 0.11 1 0.06 0.07 0.08 0.08 0.08 0.06
flat 0.06 0.09 0.15 0.20 0.06 1 0.01 0.02 0.09 0.05 0.09
use 0.13 0.05 0.06 0.06 0.07 0.01 1 0.05 0.03 0.12 0.05
place 0.05 0.07 0.04 0.10 0.08 0.02 0.05 1 0.06 0.13 0.03
add 0.01 0.10 0.24 0.10 0.08 0.09 0.03 0.06 1 0.03 -0.05
first 0.06 0.05 0.04 0.07 0.08 0.05 0.12 0.13 0.03 1 0.02
refuse 0.10 0.07 0.00 0.07 0.06 0.09 0.05 0.03 -0.05 0.02 1

The results show that our approach outperformed LDA in terms
of extrinsic and intrinsic coherence scores for both domains over
all values of K , with minor exceptions. For the Investing domain,
LDA’s topic quality started to decline sharply after 20 topics, while
our approach maintained a relatively flat coherence curve over the
whole range of K . In terms of significance of the obtained results,
we found that our approach tends to perform significantly better
with a higher number of topics (K = 50 and K ≥ 70). For K = 10,
we found that our approach significantly outperforms LDA in terms
of intrinsic coherence, which suggests that our approach infers the
topics from the underlying Investing dataset better. For the Food
Delivery domain, we observed a similar trend, with LDA’s topic
coherence dropping more sharply after the K = 30 mark, thus,
every keyATM configuration significantly outperformed LDA for
K ≥ 50. Furthermore, some configurations, such as keyATM-15
and keyATM-25 significantly outperformed LDA across all K ≥ 20
in terms of extrinsic coherence, which suggests that the produced
topics even for smaller K values are more interpretable by humans.

We further observed that some keyATM configurations outper-
form each other for differentK values. For example, in the Investing
domain, keyATM-25 performs the best when K = {10, 40, 80, 100},
but produces slightly worse results for the rest of the Ks. To com-
pare the performance of various keyATM configurations, we used
an independent t-test for every pair of configurations. The gen-
eral trend suggests that removing some percentile of unrelated
keywords somewhat helps the model to produce more coherent
topics for certain K values. However, not all improvements were
statistically significant. In what follows, we discuss these trends
along with their potential implications in greater detail.

5 DISCUSSION AND IMPACT
Based on our results, the main implication of our study suggests
that it is possible to avoid a costly tagging process of a ground truth
dataset and still outperform a traditional topic modeling technique
over app review data. With only a handful of hyperparameters
required to consider, our study outlines a first-of-its-kind approach
for inferring meaningful latent topics from a semantically-restricted
corpus of user reviews.
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Figure 3: Intrinsic and extrinsic coherence scores for two domains of app reviews across all tested model configurations and
K . For example, keyATM-5 is a keyATMmodel with the bottom 5th percentile of keywords removed from each summary.

Table 3: Independent t-test results (t-values) for the difference between extrinsic (Ext) and intrinsic (Int) coherence of the
baseline (LDA) and the various keyATMmodel configurations for the Investing domain. Significant values are in bold. p-values
are indicated:*p<0.05; †p<0.01; ‡p<0.001.

keyATM-0 keyATM-5 keyATM-15 keyATM-25
# of topics Ext Int Ext Int Ext Int Ext Int

10 0.794 2.599* 0.974 1.905 1.428 2.861* 1.532 3.220†
20 0.473 0.742 0.123 0.876 0.214 1.620 -0.079 -0.101
30 1.841 0.677 0.765 0.199 1.310 0.380 0.858 0.652
40 1.430 1.636 1.629 3.536‡ 0.983 1.777 2.226* 1.768
50 2.418* 1.536 2.126* 2.129* 3.022† 0.454 2.644† 0.470
60 1.007 1.911 1.012 3.213† 1.543 2.934† 1.495 3.616‡
70 2.094* 3.495‡ 1.905 2.182* 2.882† 2.234* 2.013* 1.809
80 1.398 4.328‡ 2.235* 1.924 1.627 2.720† 3.025† 3.915‡
90 0.984 2.360* 1.284 2.170* 2.446* 1.557 1.955 3.480‡
100 2.467* 4.577‡ 3.048† 2.705† 3.174† 3.245† 4.451‡ 2.489*

Table 4: Independent t-test results (t-values) for the difference between extrinsic (Ext) and intrinsic (Int) coherence of the
baseline (LDA) and the various keyATM model configurations for the Food Delivery domain. Significant values are in bold.
p-values are indicated:*p<0.05; †p<0.01; ‡p<0.001.

keyATM-0 keyATM-5 keyATM-15 keyATM-25
# of topics Ext Int Ext Int Ext Int Ext Int

10 -0.061 0.002 0.507 0.345 0.434 0.086 0.749 -0.188
20 1.746 0.620 1.580 1.083 2.319* 0.676 2.148* 0.323
30 1.657 0.066 1.744 -0.727 2.280* -0.566 2.382* -0.256
40 2.370* 1.687 2.484* 1.719 2.425* 1.798 2.391* 1.757
50 3.580‡ 2.689† 3.763‡ 2.717† 4.027‡ 2.765† 3.868‡ 2.798†
60 3.607‡ 3.404‡ 3.831‡ 3.224† 3.878‡ 3.305† 4.075‡ 3.483‡
70 4.221‡ 3.846‡ 4.360‡ 3.860‡ 4.287‡ 3.934‡ 4.370‡ 3.801‡
80 3.762‡ 3.419‡ 3.802‡ 3.573‡ 4.084‡ 3.563‡ 3.745‡ 3.342†
90 4.265‡ 3.946‡ 4.441‡ 4.112‡ 4.498‡ 4.104‡ 4.638‡ 4.040‡
100 5.755‡ 5.835‡ 6.061‡ 5.815‡ 5.991‡ 5.447‡ 6.174‡ 5.884‡

Our results provide evidence that it is possible to significantly
improve the quality of the inferred topics by supplementing a topic
model with a small set of representative keywords. In fact, even
when the supplied keyword set is incomplete, the model is still able
to correctly infer latent topics and provide interpretable results. For

example, Table 5 presents the top-5 topics in terms of coherence
generated for the reviews in our datasets. Topic 3 of the Investing
app reviews is about losing money due to price fluctuations on
a trading day. However, only a handful of words hinting toward
that specific topic were provided to the model: sell, stock, and
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lose. Nevertheless, the model correctly identified the main idea
of the topic and discovered new related words. Another example
is Topic 1 in the Food Delivery review corpus, which seems to
be discussing a problem with customer service. Interestingly, the
keywords customer and service were never supplied to this topic.
Nevertheless, the model was still able to create a topic with a high
coherence score. An interesting case is Topic 2 from the Investing
domain - none of the keywords appeared in the top-10 words of the
topic, however, the topic’s theme is interpretable, pointing out to
user interface (UI) problems. In fact, this topic which was obtained
with K = 10 does not appear in LDA’s topics at all for the similar
values of K = {10, 20, 30}. This shows that our approach is able
to extract underrepresented topics from a semantically-restricted
dataset, where LDA typically fails.

As expected, smaller sets of focused keywords (seeds) produced
the highest-quality topics. A large number of general keywords
still managed to produce coherent topics, although such keywords
are less likely to appear in the top-10 list of the topic. This suggests
that the quality of the resulting model is influenced by the quality
of the supplied keywords, therefore the main effort should be fo-
cused on the process of improving the seeding words for the topics.
This process, in turn, is dependent on the underlying dataset. For
example, using different summarization parameters can produce
different seeds. As such, these parameters should be tuned along
with the rest of the hyperparameters, such as K , α , and β .

In terms of specific model configurations, our results indicate
a general trend toward higher coherence score produced by the
configurations with a higher percentile removed keywords (n). The
implications of this finding suggest that there is no one-size-fits-
all approach when it comes to deriving an optimal model: each
document corpus requires a comprehensive hyperparameter tuning
strategy to create the best-performing model. For instance, in terms
of raw coherence score, we found that keyATM-15 performed the
best when K was set to 10 for Investing and K = 50 for Food
Delivery domains. This difference in K can be explained by the
difference in dataset size; the Food Delivery dataset has about 6.5
times more reviews than the Investing dataset.

In terms of impact, our expectation is that our approach would
advance the state of the art by enabling further empirical investi-
gations related to using topic modeling in software engineering
tasks. In particular, topic modeling, especially LDA, has long been
used to provide support for basic Software Engineering activities,
such as requirements traceability [27], bug localization [76], code
retrieval [48], and most recently mobile app review analysis. How-
ever, LDA’s performance has always been hindered by the limited
semantic and syntactic nature of software artifacts, whether source
code, bug reports, requirements specifications, or software user
reviews [17, 27, 52, 82]. Our proposed approach aims to address
these challenges by assessing LDA to produce more cohesive topics
that can be pointed out by few important words extracted from the
corpus. Such words can be automatically determined using basic
text summarization techniques that have been shown to achieve
high levels of agreements with human generated summaries over
collections of software user feedback [34, 65, 81]. This relatively
simple methodology can overcome the limitations often associated
with other expensive solutions, such as using machine learning

to tune LDA’s parameters [61], thus, enabling the development of
more practical software engineering tools.

In terms of practical impact, our results highlight the need for a
more nuanced, domain-aware approach for information extraction
from user reviews. Similar to existing topic modeling and text
classification algorithms, our approach can facilitate a transition
from domain knowledge to requirements specifications. However,
the key advantage of our approach over the existing techniques is
that it can provide more fine-grained requirements information and
simultaneously avoid the need to manually label a subset of reviews.
The information obtained from keyATM can then be effectively
used by app developers. For instance, developers of Investing apps
may observe that UI (Topic 2) is a major concern of Investing app
users, thus, concentrate their development efforts to improve user
experience by extracting reviews where the UI topic has a high
probability and analyze them, and may be even derive a more
nuanced set of keywords (e.g., screen, color, graphs, etc.) to split
the topic into any level of detail required. After the release of their
apps, developers can further monitor user feedback and reallocate
their resources more efficiently to quickly address the emerging
user concerns.

6 RELATEDWORK
The problem of extracting valuable information from app reviews
has received significant attention in the literature [14, 24, 25, 34, 42,
45, 47, 51, 55, 70, 71, 78, 80, 82, 84]. A wide variety of supervised and
unsupervised techniques have been used to mine such reviews for
different categories of feedback. For example, Guo and Singh [23]
proposed Caspar - an approach for extracting user stories from in-
formative app reviews. A user story is an “action-problem” pair of
events where a problem with an app is triggered by user action. The
authors applied dependency parsing to extract temporally-related
user stories from app reviews and train a bidirectional LSTM net-
work for classification. Panichella et al. [63] proposed a tool for clas-
sifying user reviews into useful software maintenance categories.
The approach uses NLP heuristics, such as common linguistic pat-
terns, to formulate features for the classifier. The authors found
that the structure of a review and its sentiment can predict the
maintenance category with high precision and recall. Williams et
al. [82] proposed a methodology to extract domain-specific user
feedback from app reviews and tweets. The authors utilized Hybrid
TF.IDF to extract important words from app reviews and then used
PMI to derive relationships between them to form specific user
concerns in a given app domain.

Along the line of our work, active learning was proposed to
reduce the manual effort required to classify app reviews. Active
learning algorithms learn the data incrementally by selecting a
small sample of reviews for manual labeling based on uncertainty
metric and predicting the remaining labels. The steps are repeated
until the desired accuracy is reached. For example, Dhinakaran
et. al. [19] evaluated an active learning pipeline for app review
classification. The authors classified reviews into four categories:
feature request, bug report, user experience, and rating. Several
uncertainty sampling metrics were proposed and evaluated, such
as Least Confident Prediction, Smallest Margin, and Highest En-
tropy. The experiment was conducted on Maalej et al.’s labeled

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Domain-Specific Analysis of Mobile App Reviews Using Keyword-Assisted Topic ModelsICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

Table 5: Top-5 generated topics for the Investing and Food Delivery domains by the best performing model configurations.
keyATM-15 with K=10 was used for the Investing domain, and keyATM-15 with K=50 was used for Food Delivery. Seeds are
highlighted in bold. Example reviews are selected from the top-10 reviews for each topic.

Domain Topics Most probable words Example review

Investing

Topic 1 trade, day, money, trad-
ing, stock, time, market,
platform, service, like

...price could swing $.10-$.30/share easily between the time you’ve submitted a purchase
and when it actually submits. Trading hours open up at 8am and only last until 5pm, the
worst trading hours by far

Topic 2 see, update, change, new,
stock, like, screen, look,
show, view

Please change the color and font of new Robinhood, it’s hard to focus and it hurt my eyes
if I look into app for while, not impress with this update.

Topic 3 money, sell, stock, lose,
price, market, time, buy,
trade, trading

When I decided to sell my shares my orders were not executed at my price and the stock
kept going down. Lost of hundred dollars.

Topic 4 account, money, email,
customer, bank, time, ser-
vice, day, say, support

The customer service is HORRIBLE!!!!!!!!... Contacted customer service 2 or 3 times and
after 24 hours... They say it takes about 10 days to close and get money transferred back
to my bank.

Topic 5 money, account, take,
bank, invest, fee, charge,
back, day, transfer

Reason for me giving a low rating is due to the fact that all it seems the app is doing is
taking my money. I’m getting over drafts, I STILL don’t see where my $700 in roundups
went

Food delivery

Topic 1 help, problem, would,
service, could, customer,
app, great, able, order

Customer service is really bad. 2 days in a row they cancelled my orders

Topic 2 app, work, address, or-
der, try, time, use, update,
even, get

When I type in my address and zip code and then hit Find Restaurants, it says "State is
UNSET should be VALID"

Topic 3 drive, driver, food,
minute, around, house,
away, street, go, car

Watched the driver drive to the next town over before delivering our food.

Topic 4 app, order, time, second,
crash, try, twice, open,
use, every

Over the past few days the app has been crashing every single time I open it.

Topic 5 app, ever, number, use,
bad, give, account, sign,
one, star

I can’t even log in. It asks for my phone number...

datasets [50]. The authors showed that active learners that employ
binary classifiers were more effective in terms of F-score for review
classification tasks than passive learners.

Recently, unsupervised techniques have been used to discover
latent topics in user reviews. Most of these approaches modify
and extend LDA to increase its effectiveness for user generated
feedback [12, 13, 56, 59, 67]. For instance, Mehrotra et al. [56] pro-
posed grouping related short user tweets based on hashtags before
supplying them to the LDA model. Qiao et al. [67] introduced the
Latent Product Defect Mining Model (LPDM) for collecting domain-
specific product defects from customer reviews. This approach
augments LDA by including latent product components and their
descriptions. While these techniques share the same goal of improv-
ing topic cohesiveness, to the best of our knowledge, our proposed
approach is the first to utilize keyATM as well as text summarization
techniques to generate more cohesive topics of user reviews.

7 THREATS TO VALIDITY
The study conducted in this paper suffers from several methodolog-
ical constraints that might jeopardize the validity of our results.
One major external validity threat might stems from the fact that

our results might not be generalizable to other application domains
of mobile apps. In an attempt to overcome this threat, we performed
our analysis on two different domains of apps, Investing and Food
Delivery. Furthermore, the datasets have drastically different sizes
to ensure that our approach is able to produce coherent topics
regardless of the amount of data available.

An internal validity threat might arise from the fact that we
removed a large amount of reviews during our informative review
extracting step in order to increase the quality of the review corpus.
Therefore, some of the latent topics from the removed reviews
might have been missed. However, performing review filtering is
a standard practice for any supervised or unsupervised machine
learning task. These methodologies have been shown to remove
high percentage of uninformative reviews in review corpora with
high levels of precision [23, 36]. Furthermore, the hyperparameter
settings used to tune LDA might affect the internal validity of the
study. However, there are no robust methodology available for every
parameter for every scenario. Therefore, we applied a standard
procedure of training several models with various K parameter
values until the best results were obtained.
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Another internal validity threat might stem from the apps se-
lected for each domain. While we acknowledge that there are
dozens, if not hundreds, of apps available under the Investing and
Food Delivery domains, most of these apps do not have a sufficient
number of reviews. Including such less popular apps would be
problematic as the generated topics would be biased toward apps
with more reviews. Nonetheless, we acknowledge the fact that the
results of our analysis might not necessarily generalize over other
apps in our domains or even over other domains.

Construct validity is the degree to which the various perfor-
mance measures used in the study accurately capture the concepts
they purport to measure. A construct validity threat might be raised
about the reliability of the coherence measures used to evaluate
the quality of generated topics. To address these threats, we used
two types of intrinsic and extrinsic coherence measures that are
based on the semantic relatedness of topic words. These measures
have been extensively used in the literature and have been shown
to achieve high correlation levels with human judgment [69]. Gen-
erally speaking, topic models are often utilized as a means to an
end, where generated topics are used to help enable other tasks,
such as information retrieval, or even used as input for machine
learning algorithms, thus, they are better evaluated in that context.
Nonetheless, further evaluation using human judges is necessary
to paint a full picture of topic quality.

8 CONCLUSIONS
In this paper, we proposed an approach for analyzing mobile app
user feedback using keyword-assisted topic models. The proposed
approach relies on a set of seeding words (keywords) extracted
from the corpus to generate more cohesive topics. In this paper,
we showed that these keywords can be automatically extracted
from the corpus using general-purpose extractive summarization
techniques. The proposed approach was evaluated on two datasets
of user reviews, sampled from the domains of Investing and Food
Delivery apps. The results showed that our proposed keyword as-
sisted topic modeling approach was able to significantly outperform
LDA on both intrinsic and extrinsic measures of topic cohesiveness.
Furthermore, our approach was able to model topics that are often
overlooked by classical topic modeling techniques. Our findings in
this paper are intended to advance the state-of-the-art in mobile
app review analysis as well as enable further empirical investiga-
tions into topic modeling for software user feedback. To achieve
these goals, our work in this paper will be extended across two
main directions:

• Automatic tuning: we will continue to evaluate the proposed
approach over larger datasets of mobile app reviews and
across more application domains. Our objective is to devise
automated optimization strategies for tuning the different
parameters of our underlying topic modeling approach in
different settings.

• Tool support: a working prototype which will implement
our findings in this paper will be implemented and made
publicly available. Such a prototype will enable us to examine
the applicability and usability of our approach as well as its
overall effectiveness in practical settings.
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